if(keras_available()) {
X_train <- matrix(rnorm(100 * 10), nrow = 100)
Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)
mod <- Sequential()
mod$add(Dense(units = 50, input_shape = dim(X_train)[2]))
mod$add(Activation("relu"))
mod$add(Dense(units = 3))
mod$add(Activation("softmax"))
keras_compile(mod, loss = 'categorical_crossentropy', optimizer = SGD())
keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
verbose = 0, validation_split = 0.2)
keras_compile(mod, loss = 'categorical_crossentropy', optimizer = RMSprop())
keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
verbose = 0, validation_split = 0.2)
keras_compile(mod, loss = 'categorical_crossentropy', optimizer = Adagrad())
keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
verbose = 0, validation_split = 0.2)
keras_compile(mod, loss = 'categorical_crossentropy', optimizer = Adadelta())
keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
verbose = 0, validation_split = 0.2)
keras_compile(mod, loss = 'categorical_crossentropy', optimizer = Adam())
keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
verbose = 0, validation_split = 0.2)
keras_compile(mod, loss = 'categorical_crossentropy', optimizer = Adamax())
keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
verbose = 0, validation_split = 0.2)
keras_compile(mod, loss = 'categorical_crossentropy', optimizer = Nadam())
keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
verbose = 0, validation_split = 0.2)
}
Run the code above in your browser using DataLab