new("gausspr", ...).
or by calling the gausspr functiontol:"numeric" contains
tolerance of termination criteriakernelf:"kfunction" contains
the kernel function usedkpar:"list" contains the
kernel parameter used kcall:"list" contains the used
function call type:"character" contains
type of problem terms:"ANY" contains the
terms representation of the symbolic model used (when using a formula)xmatrix:"input" containing
the data matrix used ymatrix:"output" containing the
response matrixfitted:"output" containing the
fitted values lev:"vector" containing the
levels of the response (in case of classification) nclass:"numeric" containing
the number of classes (in case of classification) alpha:"listI" containing the
computes alpha values alphaindex"list" containing
the indexes for the alphas in various classes (in multi-class
problems).sol"matrix" containing the solution to the Gaussian Process formulation, it is used to compute the variance in regression problems.scaling"ANY" containing
the scaling coefficients of the data (when case scaled = TRUE is used).nvar:"numeric" containing the
computed varianceerror:"numeric" containing the
training errorcross:"numeric" containing the
cross validation errorn.action:"ANY" containing the
action performed in NA signature(object = "gausspr"): returns the alpha
vectorsignature(object = "gausspr"): returns the cross
validation error signature(object = "gausspr"): returns the
training error signature(object = "vm"): returns the fitted values signature(object = "gausspr"): returns the call performedsignature(object = "gausspr"): returns the
kernel function usedsignature(object = "gausspr"): returns the kernel
parameter usedsignature(object = "gausspr"): returns the
response levels (in classification) signature(object = "gausspr"): returns the type
of problemsignature(object = "gausspr"): returns the
data matrix usedsignature(object = "gausspr"): returns the
response matrix usedsignature(object = "gausspr"): returns the
scaling coefficients of the data (when scaled = TRUE is used)gausspr,
ksvm-class,
vm-class
# train model
data(iris)
test <- gausspr(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)
Run the code above in your browser using DataLab