Learn R Programming

kernlab (version 0.9-24)

gausspr-class: Class "gausspr"

Description

The Gaussian Processes object class

Arguments

Objects from the Class

Objects can be created by calls of the form new("gausspr", ...). or by calling the gausspr function

Slots

tol:
Object of class "numeric" contains tolerance of termination criteria
kernelf:
Object of class "kfunction" contains the kernel function used
kpar:
Object of class "list" contains the kernel parameter used
kcall:
Object of class "list" contains the used function call
type:
Object of class "character" contains type of problem
terms:
Object of class "ANY" contains the terms representation of the symbolic model used (when using a formula)
xmatrix:
Object of class "input" containing the data matrix used
ymatrix:
Object of class "output" containing the response matrix
fitted:
Object of class "output" containing the fitted values
lev:
Object of class "vector" containing the levels of the response (in case of classification)
nclass:
Object of class "numeric" containing the number of classes (in case of classification)
alpha:
Object of class "listI" containing the computes alpha values
alphaindex
Object of class "list" containing the indexes for the alphas in various classes (in multi-class problems).
sol
Object of class "matrix" containing the solution to the Gaussian Process formulation, it is used to compute the variance in regression problems.
scaling
Object of class "ANY" containing the scaling coefficients of the data (when case scaled = TRUE is used).
nvar:
Object of class "numeric" containing the computed variance
error:
Object of class "numeric" containing the training error
cross:
Object of class "numeric" containing the cross validation error
n.action:
Object of class "ANY" containing the action performed in NA

Methods

alpha
signature(object = "gausspr"): returns the alpha vector
cross
signature(object = "gausspr"): returns the cross validation error
error
signature(object = "gausspr"): returns the training error
fitted
signature(object = "vm"): returns the fitted values
kcall
signature(object = "gausspr"): returns the call performed
kernelf
signature(object = "gausspr"): returns the kernel function used
kpar
signature(object = "gausspr"): returns the kernel parameter used
lev
signature(object = "gausspr"): returns the response levels (in classification)
type
signature(object = "gausspr"): returns the type of problem
xmatrix
signature(object = "gausspr"): returns the data matrix used
ymatrix
signature(object = "gausspr"): returns the response matrix used
scaling
signature(object = "gausspr"): returns the scaling coefficients of the data (when scaled = TRUE is used)

See Also

gausspr, ksvm-class, vm-class

Examples

Run this code

# train model
data(iris)
test <- gausspr(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)

Run the code above in your browser using DataLab