new("gausspr", ...)
.
or by calling the gausspr
functiontol
:"numeric"
contains
tolerance of termination criteriakernelf
:"kfunction"
contains
the kernel function usedkpar
:"list"
contains the
kernel parameter used kcall
:"list"
contains the used
function call type
:"character"
contains
type of problem terms
:"ANY"
contains the
terms representation of the symbolic model used (when using a formula)xmatrix
:"input"
containing
the data matrix used ymatrix
:"output"
containing the
response matrixfitted
:"output"
containing the
fitted values lev
:"vector"
containing the
levels of the response (in case of classification) nclass
:"numeric"
containing
the number of classes (in case of classification) alpha
:"listI"
containing the
computes alpha values alphaindex
"list"
containing
the indexes for the alphas in various classes (in multi-class
problems).sol
"matrix"
containing the solution to the Gaussian Process formulation, it is used to compute the variance in regression problems.scaling
"ANY"
containing
the scaling coefficients of the data (when case scaled = TRUE
is used).nvar
:"numeric"
containing the
computed varianceerror
:"numeric"
containing the
training errorcross
:"numeric"
containing the
cross validation errorn.action
:"ANY"
containing the
action performed in NA signature(object = "gausspr")
: returns the alpha
vectorsignature(object = "gausspr")
: returns the cross
validation error signature(object = "gausspr")
: returns the
training error signature(object = "vm")
: returns the fitted values signature(object = "gausspr")
: returns the call performedsignature(object = "gausspr")
: returns the
kernel function usedsignature(object = "gausspr")
: returns the kernel
parameter usedsignature(object = "gausspr")
: returns the
response levels (in classification) signature(object = "gausspr")
: returns the type
of problemsignature(object = "gausspr")
: returns the
data matrix usedsignature(object = "gausspr")
: returns the
response matrix usedsignature(object = "gausspr")
: returns the
scaling coefficients of the data (when scaled = TRUE
is used)gausspr
,
ksvm-class
,
vm-class
# train model
data(iris)
test <- gausspr(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)
Run the code above in your browser using DataLab