Learn R Programming

kernlab (version 0.9-24)

kqr-class: Class "kqr"

Description

The Kernel Quantile Regression object class

Arguments

Objects from the Class

Objects can be created by calls of the form new("kqr", ...). or by calling the kqr function

Slots

kernelf:
Object of class "kfunction" contains the kernel function used
kpar:
Object of class "list" contains the kernel parameter used
coef:
Object of class "ANY" containing the model parameters
param:
Object of class "list" contains the cost parameter C and tau parameter used
kcall:
Object of class "list" contains the used function call
terms:
Object of class "ANY" contains the terms representation of the symbolic model used (when using a formula)
xmatrix:
Object of class "input" containing the data matrix used
ymatrix:
Object of class "output" containing the response matrix
fitted:
Object of class "output" containing the fitted values
alpha:
Object of class "listI" containing the computes alpha values
b:
Object of class "numeric" containing the offset of the model.
scaling
Object of class "ANY" containing the scaling coefficients of the data (when case scaled = TRUE is used).
error:
Object of class "numeric" containing the training error
cross:
Object of class "numeric" containing the cross validation error
n.action:
Object of class "ANY" containing the action performed in NA
nclass:
Inherited from class vm, not used in kqr
lev:
Inherited from class vm, not used in kqr
type:
Inherited from class vm, not used in kqr

Methods

coef
signature(object = "kqr"): returns the coefficients (alpha) of the model
alpha
signature(object = "kqr"): returns the alpha vector (identical to coef)
b
signature(object = "kqr"): returns the offset beta of the model.
cross
signature(object = "kqr"): returns the cross validation error
error
signature(object = "kqr"): returns the training error
fitted
signature(object = "vm"): returns the fitted values
kcall
signature(object = "kqr"): returns the call performed
kernelf
signature(object = "kqr"): returns the kernel function used
kpar
signature(object = "kqr"): returns the kernel parameter used
param
signature(object = "kqr"): returns the cost regularization parameter C and tau used
xmatrix
signature(object = "kqr"): returns the data matrix used
ymatrix
signature(object = "kqr"): returns the response matrix used
scaling
signature(object = "kqr"): returns the scaling coefficients of the data (when scaled = TRUE is used)

See Also

kqr, vm-class, ksvm-class

Examples

Run this code


# create data
x <- sort(runif(300))
y <- sin(pi*x) + rnorm(300,0,sd=exp(sin(2*pi*x)))

# first calculate the median
qrm <- kqr(x, y, tau = 0.5, C=0.15)

# predict and plot
plot(x, y)
ytest <- predict(qrm, x)
lines(x, ytest, col="blue")

# calculate 0.9 quantile
qrm <- kqr(x, y, tau = 0.9, kernel = "rbfdot",
           kpar = list(sigma = 10), C = 0.15)
ytest <- predict(qrm, x)
lines(x, ytest, col="red")

# print model coefficients and other information
coef(qrm)
b(qrm)
error(qrm)
kernelf(qrm)

Run the code above in your browser using DataLab