Learn R Programming

kernlab (version 0.9-24)

lssvm-class: Class "lssvm"

Description

The Gaussian Processes object

Arguments

Objects from the Class

Objects can be created by calls of the form new("lssvm", ...). or by calling the lssvm function

Slots

kernelf:
Object of class "kfunction" contains the kernel function used
kpar:
Object of class "list" contains the kernel parameter used
param:
Object of class "list" contains the regularization parameter used.
kcall:
Object of class "call" contains the used function call
type:
Object of class "character" contains type of problem
coef:
Object of class "ANY" contains the model parameter
terms:
Object of class "ANY" contains the terms representation of the symbolic model used (when using a formula)
xmatrix:
Object of class "matrix" containing the data matrix used
ymatrix:
Object of class "output" containing the response matrix
fitted:
Object of class "output" containing the fitted values
b:
Object of class "numeric" containing the offset
lev:
Object of class "vector" containing the levels of the response (in case of classification)
scaling:
Object of class "ANY" containing the scaling information performed on the data
nclass:
Object of class "numeric" containing the number of classes (in case of classification)
alpha:
Object of class "listI" containing the computes alpha values
alphaindex
Object of class "list" containing the indexes for the alphas in various classes (in multi-class problems).
error:
Object of class "numeric" containing the training error
cross:
Object of class "numeric" containing the cross validation error
n.action:
Object of class "ANY" containing the action performed in NA
nSV:
Object of class "numeric" containing the number of model parameters

Methods

alpha
signature(object = "lssvm"): returns the alpha vector
cross
signature(object = "lssvm"): returns the cross validation error
error
signature(object = "lssvm"): returns the training error
fitted
signature(object = "vm"): returns the fitted values
kcall
signature(object = "lssvm"): returns the call performed
kernelf
signature(object = "lssvm"): returns the kernel function used
kpar
signature(object = "lssvm"): returns the kernel parameter used
param
signature(object = "lssvm"): returns the regularization parameter used
lev
signature(object = "lssvm"): returns the response levels (in classification)
type
signature(object = "lssvm"): returns the type of problem
scaling
signature(object = "ksvm"): returns the scaling values
xmatrix
signature(object = "lssvm"): returns the data matrix used
ymatrix
signature(object = "lssvm"): returns the response matrix used

See Also

lssvm, ksvm-class

Examples

Run this code

# train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)

Run the code above in your browser using DataLab