new("lssvm", ...).
or by calling the lssvm functionkernelf:"kfunction" contains
the kernel function usedkpar:"list" contains the
kernel parameter used param:"list" contains the
regularization parameter used.kcall:"call" contains the used
function call type:"character" contains
type of problem coef:"ANY" contains
the model parameter terms:"ANY" contains the
terms representation of the symbolic model used (when using a formula)xmatrix:"matrix" containing
the data matrix used ymatrix:"output" containing the
response matrixfitted:"output" containing the
fitted values b:"numeric" containing the
offset lev:"vector" containing the
levels of the response (in case of classification) scaling:"ANY" containing the
scaling information performed on the datanclass:"numeric" containing
the number of classes (in case of classification) alpha:"listI" containing the
computes alpha values alphaindex"list" containing
the indexes for the alphas in various classes (in multi-class problems).error:"numeric" containing the
training errorcross:"numeric" containing the
cross validation errorn.action:"ANY" containing the
action performed in NA nSV:"numeric" containing the
number of model parameters signature(object = "lssvm"): returns the alpha
vectorsignature(object = "lssvm"): returns the cross
validation error signature(object = "lssvm"): returns the
training error signature(object = "vm"): returns the fitted values signature(object = "lssvm"): returns the call performedsignature(object = "lssvm"): returns the
kernel function usedsignature(object = "lssvm"): returns the kernel
parameter usedsignature(object = "lssvm"): returns the regularization
parameter usedsignature(object = "lssvm"): returns the
response levels (in classification) signature(object = "lssvm"): returns the type
of problemsignature(object = "ksvm"): returns the
scaling values signature(object = "lssvm"): returns the
data matrix usedsignature(object = "lssvm"): returns the
response matrix usedlssvm,
ksvm-class
# train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)
Run the code above in your browser using DataLab