new("lssvm", ...)
.
or by calling the lssvm
functionkernelf
:"kfunction"
contains
the kernel function usedkpar
:"list"
contains the
kernel parameter used param
:"list"
contains the
regularization parameter used.kcall
:"call"
contains the used
function call type
:"character"
contains
type of problem coef
:"ANY"
contains
the model parameter terms
:"ANY"
contains the
terms representation of the symbolic model used (when using a formula)xmatrix
:"matrix"
containing
the data matrix used ymatrix
:"output"
containing the
response matrixfitted
:"output"
containing the
fitted values b
:"numeric"
containing the
offset lev
:"vector"
containing the
levels of the response (in case of classification) scaling
:"ANY"
containing the
scaling information performed on the datanclass
:"numeric"
containing
the number of classes (in case of classification) alpha
:"listI"
containing the
computes alpha values alphaindex
"list"
containing
the indexes for the alphas in various classes (in multi-class problems).error
:"numeric"
containing the
training errorcross
:"numeric"
containing the
cross validation errorn.action
:"ANY"
containing the
action performed in NA nSV
:"numeric"
containing the
number of model parameters signature(object = "lssvm")
: returns the alpha
vectorsignature(object = "lssvm")
: returns the cross
validation error signature(object = "lssvm")
: returns the
training error signature(object = "vm")
: returns the fitted values signature(object = "lssvm")
: returns the call performedsignature(object = "lssvm")
: returns the
kernel function usedsignature(object = "lssvm")
: returns the kernel
parameter usedsignature(object = "lssvm")
: returns the regularization
parameter usedsignature(object = "lssvm")
: returns the
response levels (in classification) signature(object = "lssvm")
: returns the type
of problemsignature(object = "ksvm")
: returns the
scaling values signature(object = "lssvm")
: returns the
data matrix usedsignature(object = "lssvm")
: returns the
response matrix usedlssvm
,
ksvm-class
# train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)
Run the code above in your browser using DataLab