The Gaussian Processes object
Objects can be created by calls of the form new("lssvm", ...)
.
or by calling the lssvm
function
kernelf
:Object of class "kfunction"
contains
the kernel function used
kpar
:Object of class "list"
contains the
kernel parameter used
param
:Object of class "list"
contains the
regularization parameter used.
kcall
:Object of class "call"
contains the used
function call
type
:Object of class "character"
contains
type of problem
coef
:Object of class "ANY"
contains
the model parameter
terms
:Object of class "ANY"
contains the
terms representation of the symbolic model used (when using a formula)
xmatrix
:Object of class "matrix"
containing
the data matrix used
ymatrix
:Object of class "output"
containing the
response matrix
fitted
:Object of class "output"
containing the
fitted values
b
:Object of class "numeric"
containing the
offset
lev
:Object of class "vector"
containing the
levels of the response (in case of classification)
scaling
:Object of class "ANY"
containing the
scaling information performed on the data
nclass
:Object of class "numeric"
containing
the number of classes (in case of classification)
alpha
:Object of class "listI"
containing the
computes alpha values
alphaindex
Object of class "list"
containing
the indexes for the alphas in various classes (in multi-class problems).
error
:Object of class "numeric"
containing the
training error
cross
:Object of class "numeric"
containing the
cross validation error
n.action
:Object of class "ANY"
containing the
action performed in NA
nSV
:Object of class "numeric"
containing the
number of model parameters
signature(object = "lssvm")
: returns the alpha
vector
signature(object = "lssvm")
: returns the cross
validation error
signature(object = "lssvm")
: returns the
training error
signature(object = "vm")
: returns the fitted values
signature(object = "lssvm")
: returns the call performed
signature(object = "lssvm")
: returns the
kernel function used
signature(object = "lssvm")
: returns the kernel
parameter used
signature(object = "lssvm")
: returns the regularization
parameter used
signature(object = "lssvm")
: returns the
response levels (in classification)
signature(object = "lssvm")
: returns the type
of problem
signature(object = "ksvm")
: returns the
scaling values
signature(object = "lssvm")
: returns the
data matrix used
signature(object = "lssvm")
: returns the
response matrix used
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
lssvm
,
ksvm-class
# train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)
Run the code above in your browser using DataLab