Learn R Programming

klaR (version 1.7-3)

predict.loclda: Localized Linear Discriminant Analysis (LocLDA)

Description

Classifies new observations using parameters determined by the loclda-function.

Usage

# S3 method for loclda
predict(object, newdata, ...)

Value

A list with components:

class

Vector (of class factor) of classifications.

posterior

Posterior probabilities for the classes. For details of computation see loclda (+ normalization so posterior-values add up to 1 for each observation).

all.zero

Vector (of class integer) indicating for which rows of newdata all corresponding posterior-values are \(< 10^{-150}\) before normalization. Those observations are assigned to the class to whose (locally weighted) centroid they have the lowest euclidian distance.

Arguments

object

Object of class loclda.

newdata

Data frame of cases to be classified.

...

Further arguments are ignored.

Author

Marc Zentgraf (marc-zentgraf@gmx.de) and Karsten Luebke (karsten.luebke@fom.de)

See Also

loclda

Examples

Run this code
data(B3)
x <- loclda(PHASEN ~ ., data = B3, subset = 1:80)
predict(x, B3[-(1:80),])

Run the code above in your browser using DataLab