Learn R Programming

klaR (version 1.7-3)

predict.rda: Regularized Discriminant Analysis (RDA)

Description

Classifies new observations using parameters determined by the rda-function.

Usage

# S3 method for rda
predict(object, newdata, posterior = TRUE, 
    aslist = TRUE, ...)

Value

Depends on the value of argument ‘aslist’:

Either a vector (of class factor) of classifications that (optionally) has an attribute ‘posterior

containing the posterior probability matrix, or

A list with elements ‘class’ and ‘posterior’.

Arguments

object

Object of class rda.

newdata

Data frame (or matrix) of cases to be classified.

posterior

Logical; indicates whether a matrix of posterior probabilites over all classes for each observation shall be returned in addition to classifications.

aslist

Logical; if TRUE, a list containing classifications and posterior probabilities is returned, otherwise a vector with an attribute ‘posterior’.

...

currently unused

Author

Christian Röver, roever@statistik.tu-dortmund.de

See Also

rda

Examples

Run this code
data(iris)
x <- rda(Species ~ ., data = iris, gamma = 0.05, lambda = 0.2)
predict(x, iris[, 1:4])

Run the code above in your browser using DataLab