# NOT RUN {
# this will create the data.frame "antworten.mufo"
# and the matrix "corr.key"
data(antworten.mufo)
# vector with correct answers:
richtig <- c(Item01=3, Item02=2, Item03=2, Item04=2, Item05=4,
Item06=3, Item07=4, Item08=1, Item09=2, Item10=2, Item11=4,
Item12=4, Item13=2, Item14=3, Item15=2, Item16=3, Item17=4,
Item18=4, Item19=3, Item20=5, Item21=3, Item22=3, Item23=1,
Item24=3, Item25=1, Item26=3, Item27=5, Item28=3, Item29=4,
Item30=4, Item31=13, Item32=234)
# vector with assignement of marks:
notenschluessel <- c()
# scheme of assignments: marks[points_from:to] <- mark
notenschluessel[0:12] <- 5.0
notenschluessel[13:15] <- 4.0
notenschluessel[16:18] <- 3.7
notenschluessel[19:20] <- 3.3
notenschluessel[21] <- 3.0
notenschluessel[22] <- 2.7
notenschluessel[23] <- 2.3
notenschluessel[24] <- 2.0
notenschluessel[25:26] <- 1.7
notenschluessel[27:29] <- 1.3
notenschluessel[30:32] <- 1.0
# now combine all test data into one object of class klausur.answ
mufo.data.obj <- klausur.data(answ=antworten.mufo, corr=richtig, marks=notenschluessel,
corr.key=corr.key)
# expect some warnings here, because some items have no variance
# in their subtest results, hence item analysis fails on them
klsr.mufo.obj <- klausur.mufo(mufo.data.obj)
# }
Run the code above in your browser using DataLab