Learn R Programming

knockoff (version 0.3.6)

stat.lasso_lambdadiff: Importance statistics based on the lasso

Description

Fit the lasso path and computes the difference statistic $$W_j = Z_j - \tilde{Z}_j$$ where \(Z_j\) and \(\tilde{Z}_j\) are the maximum values of the regularization parameter \(\lambda\) at which the jth variable and its knockoff enter the penalized linear regression model, respectively.

Usage

stat.lasso_lambdadiff(X, X_k, y, ...)

Value

A vector of statistics \(W\) of length p.

Arguments

X

n-by-p matrix of original variables.

X_k

n-by-p matrix of knockoff variables.

y

vector of length n, containing the response variables. It should be numeric.

...

additional arguments specific to glmnet (see Details).

Details

This function uses glmnet to compute the lasso path on a fine grid of \(\lambda\)'s and is a wrapper around the more general stat.glmnet_lambdadiff.

The nlambda parameter can be used to control the granularity of the grid of \(\lambda\)'s. The default value of nlambda is 500.

Unless a lambda sequence is provided by the user, this function generates it on a log-linear scale before calling glmnet (default 'nlambda': 500).

For a complete list of the available additional arguments, see glmnet or lars.

See Also

Other statistics: stat.forward_selection(), stat.glmnet_coefdiff(), stat.glmnet_lambdadiff(), stat.lasso_coefdiff_bin(), stat.lasso_coefdiff(), stat.lasso_lambdadiff_bin(), stat.random_forest(), stat.sqrt_lasso(), stat.stability_selection()

Examples

Run this code
set.seed(2022)
p=200; n=100; k=15
mu = rep(0,p); Sigma = diag(p)
X = matrix(rnorm(n*p),n)
nonzero = sample(p, k)
beta = 3.5 * (1:p %in% nonzero)
y = X %*% beta + rnorm(n)
knockoffs = function(X) create.gaussian(X, mu, Sigma)

# Basic usage with default arguments
result = knockoff.filter(X, y, knockoffs=knockoffs, 
                           statistic=stat.lasso_lambdadiff)
print(result$selected)

# Advanced usage with custom arguments
foo = stat.lasso_lambdadiff
k_stat = function(X, X_k, y) foo(X, X_k, y, nlambda=200)
result = knockoff.filter(X, y, knockoffs=knockoffs, statistic=k_stat)
print(result$selected)

Run the code above in your browser using DataLab