# \donttest{
library(WallomicsData)
library(kpcaIG)
Transcriptomics_Stems_s <- scale(Transcriptomics_Stems)
kpca_tan <- kernelpca(as.matrix(Transcriptomics_Stems_s),
kernel = "tanhdot",
kpar = list(scale = 0.0001, offset = 0.01))
#Compute the most relevant genes based on the first two components of kpca_tan
kpca_ig_tan <- kpca_igrad(kpca_tan, dim = c(1,2))
head(kpca_ig_tan)
# }
Run the code above in your browser using DataLab