Plot for kernel density estimate for 1- to 3-dimensional data.
# S3 method for kde
plot(x, ...)an object of class kde (output from kde)
other graphics parameters:
displaytype of display, "slice" for contour plot, "persp" for perspective plot, "image" for image plot, "filled.contour" for filled contour plot (1st form), "filled.contour2" (2nd form) (2-d)
contvector of percentages for contour level curves
abs.contvector of absolute density estimate heights for contour level curves
approx.contflag to compute approximate contour levels. Default is FALSE.
colplotting colour for density estimate (1-d, 2-d)
col.contplotting colour for contours
col.funplotting colour function for contours
col.ptplotting colour for data points
colorsvector of colours for each contour (3-d)
jitterflag to jitter rug plot (1-d). Default is TRUE.
lwd.fcline width for filled contours (2-d)
xlim,ylim,zlimaxes limits
xlab,ylab,zlabaxes labels
addflag to add to current plot. Default is FALSE.
theta,phi,d,bordergraphics parameters for perspective plots (2-d)
drawpointsflag to draw data points on density estimate. Default is FALSE.
drawlabelsflag to draw contour labels (2-d). Default is TRUE.
alphatransparency value of plotting symbol (3-d)
alphavecvector of transparency values for contours (3-d)
sizesize of plotting symbol (3-d).
Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to RGL window.
For kde objects, the function headers for the different dimensional data are
## univariate
plot(fhat, xlab, ylab="Density function", add=FALSE, drawpoints=FALSE,
col.pt="blue", col.cont=1, cont.lwd=1, jitter=FALSE, cont, abs.cont,
approx.cont=TRUE, ...)## bivariate
plot(fhat, display="slice", cont=c(25,50,75), abs.cont, approx.cont=TRUE,
xlab, ylab, zlab="Density function", cex=1, pch=1, add=FALSE,
drawpoints=FALSE, drawlabels=TRUE, theta=-30, phi=40, d=4, col.pt="blue",
col, col.fun, lwd=1, border=1, thin=3, lwd.fc=5, ...)
## trivariate
plot(fhat, cont=c(25,50,75), abs.cont, approx.cont=FALSE, colors,
add=FALSE, drawpoints=FALSE, alpha, alphavec, xlab, ylab, zlab,
size=3, col.pt="blue", ...)
The 1-d plot is a standard plot of a 1-d curve. If
drawpoints=TRUE then a rug plot is added. If cont is specified,
the horizontal line on the x-axis indicates the cont% highest
density level set.
There are different types of plotting displays for 2-d data available,
controlled by the display parameter.
(a) If display="slice" then a slice/contour plot
is generated using contour.
(b) If display is "filled.contour" or "filled.contour2"
then a filled contour plot is generated.
The default contours are at 25%, 50%, 75% or
cont=c(25,50,75) which are upper percentages of
highest density regions.
(c) If display="persp" then a perspective/wire-frame plot
is generated. The default z-axis limits zlim are the default
from the usual persp command.
(d) If display="image" then an image plot
is generated. Default colours are the default from the usual
image command.
For 3-dimensional data, the interactive plot is a series of nested
3-d contours.
The default contours are cont=c(25,50,75). The
default colors are heat.colors and the
default opacity alphavec ranges from 0.1 to 0.5.
To specify contours, either one of cont or abs.cont
is required. cont specifies upper percentages which
correspond to probability contour regions. If abs.cont is set
to particular values, then contours at these levels are drawn.
This second option is useful for plotting
multiple density estimates with common contour levels. See
contourLevels for details on computing contour levels.
If approx=FALSE, then the exact KDE is computed. Otherwise
it is interpolated from an existing KDE grid. This can dramatically
reduce computation time for large data sets.
# NOT RUN {
library(MASS)
data(iris)
## univariate example
fhat <- kde(x=iris[,2])
plot(fhat, cont=50, col.cont="blue", cont.lwd=2, xlab="Sepal length")
## bivariate example
fhat <- kde(x=iris[,2:3])
plot(fhat, display="filled.contour2", cont=seq(10,90,by=10))
plot(fhat, display="persp", thin=3, border=1, col="white")
# }
# NOT RUN {
## trivariate example
fhat <- kde(x=iris[,2:4])
plot(fhat, drawpoints=TRUE)
# }
Run the code above in your browser using DataLab