Learn R Programming

labelled

This package is built on the new classes haven_labelled and haven_labelled_spss introduced by haven package to handle labelled variables imported from SPSS, Stata and SAS. The labelled package propose several functions to manipulate such vectors and their metadata: variable labels, value labels and user-defined missing values.

Installation & Documentation

To install stable version:

install.packages("labelled")

Documentation of stable version: https://larmarange.github.io/labelled/

To install development version:

remotes::install_github("larmarange/labelled")

Documentation of development version: https://larmarange.github.io/labelled/dev/

Introduction

Read the vignette at https://larmarange.github.io/labelled/articles/intro_labelled.html

Cheatsheet

Some general guidelines

  1. Functions are intended to support labelled metadata structures only. However, to_labelled() method allows to convert metadata from foreign and memisc packages.
  2. Functions should, by default, modify metadata only (i.e. classes and attributes), except if explicitly expressed by the user.

Copy Link

Version

Install

install.packages('labelled')

Monthly Downloads

56,960

Version

2.12.0

License

GPL (>= 3)

Last Published

June 21st, 2023

Functions in labelled (2.12.0)

to_factor

Convert input to a factor.
to_character

Convert input to a character vector
x_haven_2.0

Datasets for testing
val_labels

Get / Set value labels
remove_labels

Remove variable label, value labels and user defined missing values
val_labels_to_na

Recode value labels to NA
remove_attributes

Remove attributes
unique_tagged_na

Unique elements, duplicated, ordering and sorting with tagged NAs
var_label

Get / Set a variable label
recode.haven_labelled

Recode values
update_labelled

Update labelled data to last version
to_labelled

Convert to labelled data
sort_val_labels

Sort value labels
tagged_na_to_user_na

Convert tagged NAs into user NAs
look_for

Look for keywords variable names and descriptions / Create a data dictionary
is_prefixed

Check if a factor is prefixed
recode_if

Recode some values based on condition
drop_unused_value_labels

Drop unused value labels
names_prefixed_by_values

Turn a named vector into a vector of names prefixed by values
nolabel_to_na

Recode values with no label to NA
reexports

Objects exported from other packages
na_values

Get / Set SPSS missing values
copy_labels

Copy variable and value labels and SPSS-style missing value