This function lets the user predict using the h2o .zip file containing the MOJO files. Note that it works with the files generated when using the function export_results()
h2o_predict_MOJO(df, model_path, method = "mojo", batch = 300)
Dataframe. Data to pass to the model.
Character. Relative path of directory where your zip model file is. If multiple zip files are found, first one found will be used.
Character. One of "mojo" or "json".
Integer. Run n batches at a time for "json" method.
data.frame with predicted results.
Other Machine Learning:
ROC()
,
conf_mat()
,
export_results()
,
gain_lift()
,
h2o_automl()
,
h2o_predict_API()
,
h2o_predict_binary()
,
h2o_predict_model()
,
h2o_selectmodel()
,
impute()
,
iter_seeds()
,
lasso_vars()
,
model_metrics()
,
model_preprocess()
,
msplit()
Other Tools:
autoline()
,
bind_files()
,
bring_api()
,
db_download()
,
db_upload()
,
export_plot()
,
export_results()
,
get_credentials()
,
h2o_predict_API()
,
h2o_predict_binary()
,
h2o_predict_model()
,
h2o_selectmodel()
,
haveInternet()
,
image_metadata()
,
importxlsx()
,
ip_data()
,
json2vector()
,
listfiles()
,
mail_send()
,
msplit()
,
myip()
,
quiet()
,
read.file()
,
statusbar()
,
tic()
,
try_require()
,
updateLares()
,
zerovar()