h2o_predict_MOJO
lets the user predict using the h2o .zip file
containing the MOJO files. Note that it works with the files
generated when using the function export_results()
h2o_predict_binary
lets the user predict using the h2o binary file.
Note that it works with the files generated when using the
function export_results(). Recommendation: use the
h2o_predict_MOJO() function when possible - it let's you change
h2o's version without problem.
h2o_predict_model
lets the user get scores from a H2O Model Object.
h2o_predict_API
lets the user get the score from an API service
h2o_predict_MOJO(df, model_path, method = "mojo", batch = 300)h2o_predict_binary(df, model_path, sample = NA)
h2o_predict_model(df, model)
h2o_predict_API(df, api, exclude = "tag")
data.frame with predicted results.
vector with predicted results.
data.frame with predicted results.
vector with predicted results.
Dataframe/Vector. Data to insert into the model.
Character. Relative model path directory or zip file.
Character. One of "mojo" or "json".
Integer. Run n batches at a time for "json" method.
Integer. How many rows should the function predict?
h2o model Object
Character. API URL.
Character. Name of the variables to exclude.
Other Machine Learning:
ROC()
,
conf_mat()
,
export_results()
,
gain_lift()
,
h2o_automl()
,
h2o_selectmodel()
,
impute()
,
iter_seeds()
,
lasso_vars()
,
model_metrics()
,
model_preprocess()
,
msplit()