#
# Using Sampson's Monk data, lets fit a
# simple latent position model
#
data(sampson)
#
# Get the group labels
samp.labs <- substr(get.vertex.attribute(samplike,"group"),1,1)
#
samp.fit <- ergmm(samplike ~ latent(d=2), control=ergmm.control(burnin=10000,
samplesize=2000, interval=10))
#
# See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
#
# Plot the fit
#
plot(samp.fit,label=samp.labs, vertex.col="group")
#
# Using Sampson's Monk data, lets fit a latent clustering model
samp.fit <- ergmm(samplike ~ latent(d=2, G=3), control=ergmm.control(burnin=10000, samplesize=2000, interval=10))
# See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
#
# Lets look at the goodness of fit:
#
plot(samp.fit,label=samp.labs, vertex.col="group")
plot(samp.fit,pie=TRUE,label=samp.labs)
plot(samp.fit,density=c(2,2))
plot(samp.fit,contours=5,contour.color="red")
plot(samp.fit,density=TRUE,drawarrows=TRUE)
plot(samp.fit,density=TRUE,drawarrows=TRUE,only.subdens=TRUE)
Run the code above in your browser using DataLab