Learn R Programming

latrend (version 1.6.1)

interface-crimCV: crimCV interface

Description

crimCV interface

Usage

# S4 method for lcMethodCrimCV
getArgumentDefaults(object)

# S4 method for lcMethodCrimCV getArgumentExclusions(object)

# S4 method for lcMethodCrimCV getCitation(object, ...)

# S4 method for lcMethodCrimCV getName(object)

# S4 method for lcMethodCrimCV getShortName(object)

# S4 method for lcMethodCrimCV prepareData(method, data, verbose, ...)

# S4 method for lcMethodCrimCV fit(method, data, envir, verbose, ...)

# S4 method for lcModelCrimCV predictForCluster(object, newdata, cluster, what = "mu", ...)

# S4 method for lcModelCrimCV postprob(object)

# S3 method for lcModelCrimCV logLik(object, ...)

# S3 method for lcModelCrimCV coef(object, ...)

# S4 method for lcModelCrimCV converged(object)

Arguments

object

The object.

...

Not used.

method

An object inheriting from lcMethod with all its arguments having been evaluated and finalized.

data

A data.frame representing the transformed training data.

verbose

A R.utils::Verbose object indicating the level of verbosity.

envir

The environment containing variables generated by prepareData() and preFit().

newdata

A data.frame of trajectory data for which to compute trajectory assignments.

cluster

The cluster name (as character) to predict for.

what

The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.

See Also

lcMethodCrimCV crimCV