Learn R Programming

latrend (version 1.6.1)

interface-flexmix: flexmix interface

Description

flexmix interface

Usage

# S4 method for lcMethodFlexmix
getArgumentDefaults(object)

# S4 method for lcMethodFlexmix getArgumentExclusions(object)

# S4 method for lcMethodFlexmix getCitation(object, ...)

# S4 method for lcMethodFlexmix getName(object)

# S4 method for lcMethodFlexmix getShortName(object)

# S4 method for lcMethodFlexmix preFit(method, data, envir, verbose, ...)

# S4 method for lcMethodFlexmix fit(method, data, envir, verbose, ...)

# S4 method for lcMethodFlexmixGBTM getArgumentDefaults(object)

# S4 method for lcMethodFlexmixGBTM getArgumentExclusions(object)

# S4 method for lcMethodFlexmixGBTM getName(object)

# S4 method for lcMethodFlexmixGBTM getShortName(object)

# S4 method for lcMethodFlexmixGBTM preFit(method, data, envir, verbose)

# S3 method for lcModelFlexmix fitted(object, ..., clusters = trajectoryAssignments(object))

# S4 method for lcModelFlexmix predictForCluster(object, newdata, cluster, what = "mu", ...)

# S4 method for lcModelFlexmix postprob(object, ...)

# S3 method for lcModelFlexmix logLik(object, ...)

# S3 method for lcModelFlexmix coef(object, ...)

# S4 method for lcModelFlexmix converged(object, ...)

Arguments

object

The lcModel object.

...

Not used.

method

An object inheriting from lcMethod with all its arguments having been evaluated and finalized.

data

A data.frame representing the transformed training data.

envir

The environment containing variables generated by prepareData() and preFit().

verbose

A R.utils::Verbose object indicating the level of verbosity.

clusters

Optional cluster assignments per id. If unspecified, a matrix is returned containing the cluster-specific predictions per column.

newdata

A data.frame of trajectory data for which to compute trajectory assignments.

cluster

The cluster name (as character) to predict for.

what

The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.

See Also

lcMethodFlexmix flexmix