funFEM interface
# S4 method for lcMethodFunFEM
getArgumentDefaults(object)# S4 method for lcMethodFunFEM
getArgumentExclusions(object)
# S4 method for lcMethodFunFEM
getCitation(object, ...)
# S4 method for lcMethodFunFEM
getName(object)
# S4 method for lcMethodFunFEM
getShortName(object)
# S4 method for lcMethodFunFEM
preFit(method, data, envir, verbose, ...)
# S4 method for lcMethodFunFEM
fit(method, data, envir, verbose, ...)
# S3 method for lcModelFunFEM
fitted(object, ..., clusters = trajectoryAssignments(object))
# S4 method for lcModelFunFEM
predictForCluster(
object,
newdata,
cluster,
what = "mu",
approxFun = approx,
...
)
# S4 method for lcModelFunFEM
postprob(object, ...)
# S3 method for lcModelFunFEM
coef(object, ...)
# S3 method for lcModelFunFEM
logLik(object, ...)
# S4 method for lcModelFunFEM
converged(object, ...)
The lcModel
object.
Not used.
An object inheriting from lcMethod
with all its arguments having been evaluated and finalized.
A data.frame
representing the transformed training data.
The environment
containing variables generated by prepareData()
and preFit()
.
A R.utils::Verbose object indicating the level of verbosity.
Optional cluster assignments per id. If unspecified, a matrix
is returned containing the cluster-specific predictions per column.
A data.frame
of trajectory data for which to compute trajectory assignments.
The cluster name (as character
) to predict for.
The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'
.
Function to interpolate between measurement moments, approx() by default.
lcMethodFunFEM funFEM-package