Learn R Programming

latrend (version 1.6.1)

interface-funFEM: funFEM interface

Description

funFEM interface

Usage

# S4 method for lcMethodFunFEM
getArgumentDefaults(object)

# S4 method for lcMethodFunFEM getArgumentExclusions(object)

# S4 method for lcMethodFunFEM getCitation(object, ...)

# S4 method for lcMethodFunFEM getName(object)

# S4 method for lcMethodFunFEM getShortName(object)

# S4 method for lcMethodFunFEM preFit(method, data, envir, verbose, ...)

# S4 method for lcMethodFunFEM fit(method, data, envir, verbose, ...)

# S3 method for lcModelFunFEM fitted(object, ..., clusters = trajectoryAssignments(object))

# S4 method for lcModelFunFEM predictForCluster( object, newdata, cluster, what = "mu", approxFun = approx, ... )

# S4 method for lcModelFunFEM postprob(object, ...)

# S3 method for lcModelFunFEM coef(object, ...)

# S3 method for lcModelFunFEM logLik(object, ...)

# S4 method for lcModelFunFEM converged(object, ...)

Arguments

object

The lcModel object.

...

Not used.

method

An object inheriting from lcMethod with all its arguments having been evaluated and finalized.

data

A data.frame representing the transformed training data.

envir

The environment containing variables generated by prepareData() and preFit().

verbose

A R.utils::Verbose object indicating the level of verbosity.

clusters

Optional cluster assignments per id. If unspecified, a matrix is returned containing the cluster-specific predictions per column.

newdata

A data.frame of trajectory data for which to compute trajectory assignments.

cluster

The cluster name (as character) to predict for.

what

The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.

approxFun

Function to interpolate between measurement moments, approx() by default.

See Also

lcMethodFunFEM funFEM-package