mixtools interface
# S4 method for lcMethodMixtoolsGMM
getArgumentDefaults(object)# S4 method for lcMethodMixtoolsGMM
getArgumentExclusions(object)
# S4 method for lcMethodMixtoolsGMM
getCitation(object, ...)
# S4 method for lcMethodMixtoolsGMM
getName(object)
# S4 method for lcMethodMixtoolsGMM
getShortName(object)
# S4 method for lcMethodMixtoolsGMM
preFit(method, data, envir, verbose, ...)
# S4 method for lcMethodMixtoolsGMM
fit(method, data, envir, verbose, ...)
# S4 method for lcMethodMixtoolsNPRM
getArgumentDefaults(object)
# S4 method for lcMethodMixtoolsNPRM
getArgumentExclusions(object)
# S4 method for lcMethodMixtoolsNPRM
getCitation(object, ...)
# S4 method for lcMethodMixtoolsNPRM
getName(object)
# S4 method for lcMethodMixtoolsNPRM
getShortName(object)
# S4 method for lcMethodMixtoolsNPRM
fit(method, data, envir, verbose, ...)
# S4 method for lcModelMixtoolsGMM
predictForCluster(object, newdata, cluster, what = "mu", ...)
# S4 method for lcModelMixtoolsGMM
postprob(object, ...)
# S3 method for lcModelMixtoolsGMM
logLik(object, ...)
# S3 method for lcModelMixtoolsGMM
coef(object, ...)
# S3 method for lcModelMixtoolsGMM
sigma(object, ...)
# S4 method for lcModelMixtoolsRM
clusterTrajectories(
object,
at = time(object),
what = "mu",
se = TRUE,
ci = c(0.025, 0.975),
...
)
# S4 method for lcModelMixtoolsRM
postprob(object, ...)
# S3 method for lcModelMixtoolsRM
logLik(object, ...)
# S4 method for lcModelMixtoolsRM
converged(object, ...)
The object.
Not used.
An object inheriting from lcMethod
with all its arguments having been evaluated and finalized.
A data.frame
representing the transformed training data.
The environment
containing variables generated by prepareData()
and preFit()
.
A R.utils::Verbose object indicating the level of verbosity.
A data.frame
of trajectory data for which to compute trajectory assignments.
The cluster name (as character
) to predict for.
The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'
.
A numeric vector
of the times at which to compute the cluster trajectories.
Whether to compute the standard error of the prediction.
The confidence interval to compute.
lcMethodMixtoolsGMM lcMethodMixtoolsNPRM regmixEM.mixed npEM