Learn R Programming

latrend (version 1.6.1)

interface-mixtools: mixtools interface

Description

mixtools interface

Usage

# S4 method for lcMethodMixtoolsGMM
getArgumentDefaults(object)

# S4 method for lcMethodMixtoolsGMM getArgumentExclusions(object)

# S4 method for lcMethodMixtoolsGMM getCitation(object, ...)

# S4 method for lcMethodMixtoolsGMM getName(object)

# S4 method for lcMethodMixtoolsGMM getShortName(object)

# S4 method for lcMethodMixtoolsGMM preFit(method, data, envir, verbose, ...)

# S4 method for lcMethodMixtoolsGMM fit(method, data, envir, verbose, ...)

# S4 method for lcMethodMixtoolsNPRM getArgumentDefaults(object)

# S4 method for lcMethodMixtoolsNPRM getArgumentExclusions(object)

# S4 method for lcMethodMixtoolsNPRM getCitation(object, ...)

# S4 method for lcMethodMixtoolsNPRM getName(object)

# S4 method for lcMethodMixtoolsNPRM getShortName(object)

# S4 method for lcMethodMixtoolsNPRM fit(method, data, envir, verbose, ...)

# S4 method for lcModelMixtoolsGMM predictForCluster(object, newdata, cluster, what = "mu", ...)

# S4 method for lcModelMixtoolsGMM postprob(object, ...)

# S3 method for lcModelMixtoolsGMM logLik(object, ...)

# S3 method for lcModelMixtoolsGMM coef(object, ...)

# S3 method for lcModelMixtoolsGMM sigma(object, ...)

# S4 method for lcModelMixtoolsRM clusterTrajectories( object, at = time(object), what = "mu", se = TRUE, ci = c(0.025, 0.975), ... )

# S4 method for lcModelMixtoolsRM postprob(object, ...)

# S3 method for lcModelMixtoolsRM logLik(object, ...)

# S4 method for lcModelMixtoolsRM converged(object, ...)

Arguments

object

The object.

...

Not used.

method

An object inheriting from lcMethod with all its arguments having been evaluated and finalized.

data

A data.frame representing the transformed training data.

envir

The environment containing variables generated by prepareData() and preFit().

verbose

A R.utils::Verbose object indicating the level of verbosity.

newdata

A data.frame of trajectory data for which to compute trajectory assignments.

cluster

The cluster name (as character) to predict for.

what

The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.

at

A numeric vector of the times at which to compute the cluster trajectories.

se

Whether to compute the standard error of the prediction.

ci

The confidence interval to compute.

See Also

lcMethodMixtoolsGMM lcMethodMixtoolsNPRM regmixEM.mixed npEM