Learn R Programming

latrend (version 1.6.1)

interface-mixtvem: mixtvem interface

Description

mixtvem interface

Usage

# S4 method for lcMethodMixTVEM
getArgumentDefaults(object)

# S4 method for lcMethodMixTVEM getArgumentExclusions(object)

# S4 method for lcMethodMixTVEM getCitation(object, ...)

# S4 method for lcMethodMixTVEM getName(object)

# S4 method for lcMethodMixTVEM getShortName(object)

# S4 method for lcMethodMixTVEM preFit(method, data, envir, verbose, ...)

# S4 method for lcMethodMixTVEM fit(method, data, envir, verbose, ...)

# S3 method for lcModelMixTVEM predict(object, ..., newdata = NULL, what = "mu")

# S4 method for lcModelMixTVEM postprob(object, ...)

# S4 method for lcModelMixTVEM converged(object, ...)

# S3 method for lcModelMixTVEM logLik(object, ...)

# S3 method for lcModelMixTVEM sigma(object, ...)

# S3 method for lcModelMixTVEM coef(object, ...)

Arguments

object

The object.

...

Not used.

method

An object inheriting from lcMethod with all its arguments having been evaluated and finalized.

data

A data.frame representing the transformed training data.

envir

The environment containing variables generated by prepareData() and preFit().

verbose

A R.utils::Verbose object indicating the level of verbosity.

newdata

Optional data.frame for which to compute the model predictions. If omitted, the model training data is used. Cluster trajectory predictions are made when ids are not specified.

what

The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.

See Also

lcMethodMixTVEM