Learn R Programming

latrend (version 1.6.1)

lcMethodFunction: Specify a custom method based on a function

Description

Specify a custom method based on a function

Usage

lcMethodFunction(
  response,
  fun,
  center = meanNA,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  name = "custom"
)

Arguments

response

The name of the response variable.

fun

The cluster function with signature (method, data) that returns a lcModel object.

center

Optional function for computing the longitudinal cluster centers, with signature (x).

time

The name of the time variable.

id

The name of the trajectory identification variable.

name

The name of the method.

See Also

Other lcMethod implementations: getArgumentDefaults(), getArgumentExclusions(), lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify

Examples

Run this code
data(latrendData)
# Stratification based on the mean response level
clusfun <- function(data, response, id, time, ...) {
  clusters <- data.table::as.data.table(data)[, mean(Y) > 0, by = Id]$V1
  lcModelPartition(
    data = data,
    trajectoryAssignments = factor(
      clusters,
      levels = c(FALSE, TRUE),
      labels = c("Low", "High")
    ),
    response = response,
    time = time,
    id = id
  )
}
method <- lcMethodFunction(response = "Y", fun = clusfun, id = "Id", time = "Time")
model <- latrend(method, data = latrendData)

Run the code above in your browser using DataLab