Learn R Programming

latrend (version 1.6.1)

predictPostprob: Posterior probability for new data

Description

Returns the observation-specific posterior probabilities for the given data.

For lcModel: The default implementation returns a uniform probability matrix.

Usage

predictPostprob(object, newdata = NULL, ...)

# S4 method for lcModel predictPostprob(object, newdata = NULL, ...)

Value

A N-by-K matrix indicating the posterior probability per trajectory per measurement on each row, for each cluster (the columns). Here, N = nrow(newdata) and K = nClusters(object).

Arguments

object

The model.

newdata

Optional data.frame for which to compute the posterior probability. If omitted, the model training data is used.

...

Additional arguments passed to postprob.

Implementation

Classes extending lcModel should override this method to enable posterior probability predictions for new data.


setMethod("predictPostprob", "lcModelExt", function(object, newdata = NULL, ...) {
  # return observation-specific posterior probability matrix
})

See Also

postprob

Other lcModel functions: clusterNames(), clusterProportions(), clusterSizes(), clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), estimationTime(), externalMetric(), fitted.lcModel(), fittedTrajectories(), getCall.lcModel(), getLcMethod(), ids(), lcModel-class, metric(), model.frame.lcModel(), nClusters(), nIds(), nobs.lcModel(), plot-lcModel-method, plotClusterTrajectories(), plotFittedTrajectories(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), qqPlot(), residuals.lcModel(), sigma.lcModel(), strip(), time.lcModel(), trajectoryAssignments()