lvm
-object.## S3 method for class 'lvm':
covariance(object, var1=NULL, var2=NULL, constrain=FALSE, pairwise=FALSE,...) <- value
lvm
-objectvar1
and var2
)var2
is omitted then pairwise correlation is added between all variables in var1
var1
is unspecified)lvm
-objectcovariance
function is used to specify correlation structure
between residual terms of a latent variable model, using a formula syntax.For instance, a multivariate model with three response variables,
$$Y_1 = \mu_1 + \epsilon_1$$
$$Y_2 = \mu_2 + \epsilon_2$$
$$Y_3 = \mu_3 + \epsilon_3$$
can be specified as
m <- lvm(~y1+y2+y3)
Pr. default the two variables are assumed to be independent. To add a covariance parameter $r = cov(\epsilon_1,\epsilon_2)$, we execute the following code
covariance(m) <- y1 ~ f(y2,r)
The special function f
and its second argument could be omitted thus
assigning an unique parameter the covariance between y1
and
y2
.
Similarily the marginal variance of the two response variables can be fixed to be identical ($var(Y_i)=v$) via
covariance(m) <- c(y1,y2,y3) ~ f(v)
To specify a completely unstructured covariance structure, we can call
covariance(m) <- ~y1+y2+y3
All the parameter values of the linear constraints can be given as the right
handside expression of the assigment function covariance<-
if the
first (and possibly second) argument is defined as well. E.g:
covariance(m,y1~y1+y2) <- list("a1","b1")
covariance(m,~y2+y3) <- list("a2",2)
Defines
$$var(\epsilon_1) = a1$$
$$var(\epsilon_2) = a2$$
$$var(\epsilon_3) = 2$$
$$cov(\epsilon_1,\epsilon_2) = b1$$
Parameter constraints can be cleared by fixing the relevant parameters to
NA
(see also the regression
method).
The function covariance
(called without additional arguments) can be
used to inspect the covariance constraints of a lvm
-object.
regression<-
, intercept<-
,
constrain<-
parameter<-
, latent<-
,
cancel<-
, kill<-
m <- lvm()
### Define covariance between residuals terms of y1 and y2
covariance(m) <- y1~y2
covariance(m) <- c(y1,y2)~f(v) ## Same marginal variance
covariance(m) ## Examine covariance structure
Run the code above in your browser using DataLab