Learn R Programming

lava (version 1.4.1)

curereg: Regression model for binomial data with unkown group of immortals

Description

Regression model for binomial data with unkown group of immortals

Usage

curereg(formula, cureformula = ~1, data, family = binomial(),
  offset = NULL, start, var = "hessian", ...)

Arguments

formula
Formula specifying
cureformula
Formula for model of disease prevalence
data
data frame
family
Distribution family (see the help page family)
offset
Optional offset
start
Optional starting values
var
Type of variance (robust, expected, hessian, outer)
...
Additional arguments to lower level functions

Examples

Run this code
## Simulation
n <- 2e3
x <- runif(n,0,20)
age <- runif(n,10,30)
z0 <- rnorm(n,mean=-1+0.05*age)
z <- cut(z0,breaks=c(-Inf,-1,0,1,Inf))
p0 <- lava:::expit(model.matrix(~z+age) %*% c(-.4, -.4, 0.2, 2, -0.05))
y <- (runif(n)<lava:::tigol(-1+0.25*x-0*age))*1
u <- runif(n)<p0
y[u==0] <- 0
d <- data.frame(y=y,x=x,u=u*1,z=z,age=age)
head(d)

## Estimation
e0 <- curereg(y~x*z,~1+z+age,data=d)
e <- curereg(y~x,~1+z+age,data=d)
compare(e,e0)
e
PD(e0,intercept=c(1,3),slope=c(2,6))

B <- rbind(c(1,0,0,0,20),
           c(1,1,0,0,20),
           c(1,0,1,0,20),
           c(1,0,0,1,20))
prev <- summary(e,pr.contrast=B)$prevalence

x <- seq(0,100,length.out=100)
newdata <- expand.grid(x=x,age=20,z=levels(d$z))
fit <- predict(e,newdata=newdata)
plot(0,0,type="n",xlim=c(0,101),ylim=c(0,1),xlab="x",ylab="Probability(Event)")
count <- 0
for (i in levels(newdata$z)) {
  count <- count+1
  lines(x,fit[which(newdata$z==i)],col="darkblue",lty=count)
}
abline(h=prev[3:4,1],lty=3:4,col="gray")
abline(h=prev[3:4,2],lty=3:4,col="lightgray")
abline(h=prev[3:4,3],lty=3:4,col="lightgray")
legend("topleft",levels(d$z),col="darkblue",lty=seq_len(length(levels(d$z))))

Run the code above in your browser using DataLab