Learn R Programming

lava (version 1.4.1)

gof: Extract model summaries and GOF statistics for model object

Description

Calculates various GOF statistics for model object including global chi-squared test statistic and AIC. Extract model-specific mean and variance structure, residuals and various predicitions.

Usage

gof(object, ...)

## S3 method for class 'lvmfit': gof(object, chisq=FALSE, level=0.90, rmsea.threshold=0.05,all=FALSE,...)

moments(x,...)

## S3 method for class 'lvm': moments(x, p, debug=FALSE, conditional=FALSE, data=NULL, ...)

## S3 method for class 'lvmfit': logLik(object, p=coef(object), data=model.frame(object), model=object$estimator, weight=Weight(object), weight2=object$data$weight2, ...)

## S3 method for class 'lvmfit': score(x, data=model.frame(x), p=pars(x), model=x$estimator, weight=Weight(x), weight2=x$data$weight2, ...)

## S3 method for class 'lvmfit': information(x,p=pars(x),n=x$data$n,data=model.frame(x), model=x$estimator,weight=Weight(x), weight2=x$data$weight2, ...)

Arguments

object
Model object
x
Model object
p
Parameter vector used to calculate statistics
data
Data.frame to use
weight2
Optional second data.frame (only for censored observations)
weight
Optional weight matrix
n
Number of observations
conditional
If TRUE the conditional moments given the covariates are calculated. Otherwise the joint moments are calculated
model
String defining estimator, e.g. "gaussian" (see estimate)
debug
Debugging only
chisq
Boolean indicating whether to calculate chi-squared goodness-of-fit (always TRUE for estimator='gaussian')
level
Level of confidence limits for RMSEA
rmsea.threshold
Which probability to calculate, Pr(RMSEA
all
Calculate all (ad hoc) FIT indices: TLI, CFI, NFI, SRMR, ...
...
Additional arguments to be passed to the low level functions

Value

  • A htest-object.

Examples

Run this code
m <- lvm(list(y~v1+v2+v3+v4,c(v1,v2,v3,v4)~x))
set.seed(1)
dd <- sim(m,1000)
e <- estimate(m, dd)
gof(e,all=TRUE,rmsea.threshold=0.05,level=0.9)


set.seed(1)
m <- lvm(list(c(y1,y2,y3)~u,y1~x)); latent(m) <- ~u
regression(m,c(y2,y3)~u) <- "b"
d <- sim(m,1000)
e <- estimate(m,d)
rsq(e)
##'
rr <- rsq(e,TRUE)
rr
estimate(rr,contrast=rbind(c(1,-1,0),c(1,0,-1),c(0,1,-1)))

Run the code above in your browser using DataLab