Usage
plotConf(model, var1 = all.vars(formula(model))[2], var2 = NULL,
data = NULL, ci.lty = 0, ci = TRUE, level = 0.95, pch = 16,
lty = 1, lwd = 2, npoints = 100, xlim, col = NULL, colpt,
alpha = 0.5, cex = 1, delta = 0.07, centermark = 0.03, jitter = 0.2,
cidiff = FALSE, mean = TRUE, legend = ifelse(is.null(var1), FALSE,
"topright"), trans = function(x) { x }, partres = inherits(model,
"lm"), partse = FALSE, labels, vcov, predictfun, plot = TRUE,
new = TRUE, ...)
Arguments
model
Model object (e.g. lm
)
var1
predictor (Continuous or factor)
var2
Factor that interacts with var1
data
data.frame to use for prediction (model.frame is used as default)
ci.lty
Line type for confidence limits
ci
Boolean indicating wether to draw pointwise 95% confidence limits
level
Level of confidence limits (default 95%)
pch
Point type for partial residuals
lty
Line type for estimated regression lines
lwd
Line width for regression lines
npoints
Number of points used to plot curves
col
Color (for each level in var2
)
colpt
Color of partial residual points
delta
For categorical var1
centermark
For categorical var1
jitter
For categorical var1
cidiff
For categorical var1
legend
Boolean (add legend)
trans
Transform estimates (e.g. exponential)
partres
Boolean indicating whether to plot partial residuals
labels
Optional labels of var2
vcov
Optional variance estimates
predictfun
Optional predict-function used to calculate confidence limits and predictions
plot
If FALSE return only predictions and confidence bands
new
If FALSE add to current plot
...
additional arguments to lower level functions