Learn R Programming

⚠️There's a newer version (1.8.1) of this package.Take me there.

Latent Variable Models: lava

A general implementation of Structural Equation Models with latent variables (MLE, 2SLS, and composite likelihood estimators) with both continuous, censored, and ordinal outcomes (Holst and Budtz-Joergensen (2013) <10.1007/s00180-012-0344-y>). The package also provides methods for graph exploration (d-separation, back-door criterion), simulation of general non-linear latent variable models, and estimation of influence functions for a broad range of statistical models.

Installation

install.packages("lava", dependencies=TRUE)
library("lava")
demo("lava")

For graphical capabilities the Rgraphviz package is needed (first install the BiocManager package)

# install.packages("BiocManager")
BiocManager::install("Rgraphviz")

or the igraph or visNetwork packages

install.packages("igraph")
install.packages("visNetwork")

The development version of lava may also be installed directly from github:

# install.packages("remotes")
remotes::install_github("kkholst/lava")

Citation

To cite that lava package please use one of the following references

Klaus K. Holst and Esben Budtz-Joergensen (2013). Linear Latent Variable Models: The lava-package. Computational Statistics 28 (4), pp 1385-1453. http://dx.doi.org/10.1007/s00180-012-0344-y

@article{lava,
  title = {Linear Latent Variable Models: The lava-package},
  author = {Klaus Kähler Holst and Esben Budtz-Jørgensen},
  year = {2013},
  volume = {28},
  number = {4},
  pages = {1385-1452},
  journal = {Computational Statistics},
  doi = {10.1007/s00180-012-0344-y}
}

Klaus K. Holst and Esben Budtz-Jørgensen (2020). A two-stage estimation procedure for non-linear structural equation models. Biostatistics 21 (4), pp 676-691. http://dx.doi.org/10.1093/biostatistics/kxy082

@article{lava_nlin,
  title = {A two-stage estimation procedure for non-linear structural equation models},
  author = {Klaus Kähler Holst and Esben Budtz-Jørgensen},
  journal = {Biostatistics},
  year = {2020},
  volume = {21},
  number = {4},
  pages = {676-691},
  doi = {10.1093/biostatistics/kxy082},
}

Examples

Structural Equation Model

Specify structural equation models with two factors

m <- lvm()
regression(m) <- y1 + y2 + y3 ~ eta1
regression(m) <- z1 + z2 + z3 ~ eta2
latent(m) <- ~ eta1 + eta2
regression(m) <- eta2 ~ eta1 + x
regression(m) <- eta1 ~ x

labels(m) <- c(eta1=expression(eta[1]), eta2=expression(eta[2]))
plot(m)

Simulation

d <- sim(m, 100, seed=1)

Estimation

e <- estimate(m, d)
e
#>                     Estimate Std. Error  Z-value   P-value
#> Measurements:                                             
#>    y2~eta1           0.95462    0.08083 11.80993    <1e-12
#>    y3~eta1           0.98476    0.08922 11.03722    <1e-12
#>     z2~eta2          0.97038    0.05368 18.07714    <1e-12
#>     z3~eta2          0.95608    0.05643 16.94182    <1e-12
#> Regressions:                                              
#>    eta1~x            1.24587    0.11486 10.84694    <1e-12
#>     eta2~eta1        0.95608    0.18008  5.30910 1.102e-07
#>     eta2~x           1.11495    0.25228  4.41951 9.893e-06
#> Intercepts:                                               
#>    y2               -0.13896    0.12458 -1.11537    0.2647
#>    y3               -0.07661    0.13869 -0.55241    0.5807
#>    eta1              0.15801    0.12780  1.23644    0.2163
#>    z2               -0.00441    0.14858 -0.02969    0.9763
#>    z3               -0.15900    0.15731 -1.01076    0.3121
#>    eta2             -0.14143    0.18380 -0.76949    0.4416
#> Residual Variances:                                       
#>    y1                0.69684    0.14858  4.69004          
#>    y2                0.89804    0.16630  5.40026          
#>    y3                1.22456    0.21182  5.78109          
#>    eta1              0.93620    0.19623  4.77084          
#>    z1                1.41422    0.26259  5.38570          
#>    z2                0.87569    0.19463  4.49934          
#>    z3                1.18155    0.22640  5.21883          
#>    eta2              1.24430    0.28992  4.29195

Model assessment

Assessing goodness-of-fit, here the linearity between eta2 and eta1 (requires the gof package which can installed from CRAN)

# install.packages("gof")
library(gof)
set.seed(1)
g <- cumres(e, eta2 ~ eta1)
plot(g)

Non-linear measurement error model

Simulate non-linear model

m <- lvm(y1 + y2 + y3 ~ u, u ~ x)
transform(m,u2 ~ u) <- function(x) x^2
regression(m) <- z~u2+u

d <- sim(m,200,p=c("z"=-1, "z~u2"=-0.5), seed=1)

Stage 1:

m1 <- lvm(c(y1[0:s], y2[0:s], y3[0:s]) ~ 1*u, u ~ x)
latent(m1) <- ~ u
(e1 <- estimate(m1, d))
#>                     Estimate Std. Error  Z-value  P-value
#> Regressions:                                             
#>    u~x               1.06998    0.08208 13.03542   <1e-12
#> Intercepts:                                              
#>    u                -0.08871    0.08753 -1.01344   0.3108
#> Residual Variances:                                      
#>    y1                1.00054    0.07075 14.14214         
#>    u                 1.19873    0.15503  7.73233

Stage 2

pp <- function(mu,var,data,...) cbind(u=mu[,"u"], u2=mu[,"u"]^2+var["u","u"])
(e <- measurement.error(e1, z~1+x, data=d, predictfun=pp))
#>             Estimate Std.Err    2.5%   97.5%   P-value
#> (Intercept)  -1.1181 0.13795 -1.3885 -0.8477 5.273e-16
#> x            -0.0537 0.13213 -0.3127  0.2053 6.844e-01
#> u             1.0039 0.11504  0.7785  1.2294 2.609e-18
#> u2           -0.4718 0.05213 -0.5740 -0.3697 1.410e-19
f <- function(p) p[1]+p["u"]*u+p["u2"]*u^2
u <- seq(-1, 1, length.out=100)
plot(e, f, data=data.frame(u))

Simulation

Studying the small-sample properties of a mediation analysis

m <- lvm(y~x, c~1)
regression(m) <- y+x ~ z
eventTime(m) <- t~min(y=1, c=0)
transform(m,S~t+status) <- function(x) survival::Surv(x[,1],x[,2])
plot(m)

Simulate from model and estimate indirect effects

onerun <- function(...) {
    d <- sim(m, 100)
    m0 <- lvm(S~x+z, x~z)
    e <- estimate(m0, d, estimator="glm")
    vec(summary(effects(e, S~z))$coef[,1:2])
}
val <- sim(onerun, 100)
summary(val, estimate=1:4, se=5:8, short=TRUE)
#> 100 replications					Time: 3.667s
#> 
#>         Total.Estimate Direct.Estimate Indirect.Estimate S~x~z.Estimate
#> Mean           1.97292         0.96537           1.00755        1.00755
#> SD             0.16900         0.18782           0.15924        0.15924
#> SE             0.18665         0.18090           0.16431        0.16431
#> SE/SD          1.10446         0.96315           1.03183        1.03183
#>                                                                        
#> Min            1.47243         0.54497           0.54554        0.54554
#> 2.5%           1.63496         0.61228           0.64914        0.64914
#> 50%            1.95574         0.97154           0.99120        0.99120
#> 97.5%          2.27887         1.32443           1.27807        1.27807
#> Max            2.45746         1.49491           1.33446        1.33446
#>                                                                        
#> Missing        0.00000         0.00000           0.00000        0.00000

Add additional simulations and visualize results

val <- sim(val,500) ## Add 500 simulations
plot(val, estimate=c("Total.Estimate", "Indirect.Estimate"),
     true=c(2, 1), se=c("Total.Std.Err", "Indirect.Std.Err"),
     scatter.plot=TRUE)

Copy Link

Version

Install

install.packages('lava')

Monthly Downloads

163,136

Version

1.6.10

License

GPL-3

Maintainer

Klaus Holst

Last Published

September 2nd, 2021

Functions in lava (1.6.10)

Combine

Report estimates across different models
NA2x

Convert to/from NA
Missing

Missing value generator
By

Apply a Function to a Data Frame Split by Factors
NR

Newton-Raphson method
Expand

Create a Data Frame from All Combinations of Factors
Model

Extract model
bmidata

Data
Col

Generate a transparent RGB color
Graph

Extract graph
backdoor

Backdoor criterion
bootstrap

Generic bootstrap method
addvar

Add variable to (model) object
blockdiag

Combine matrices to block diagonal structure
bmd

Longitudinal Bone Mineral Density Data (Wide format)
Grep

Finds elements in vector or column-names in data.frame/matrix
brisa

Simulated data
bootstrap.lvm

Calculate bootstrap estimates of a lvm object
contr

Create contrast matrix
constrain<-

Add non-linear constraints to latent variable model
equivalence

Identify candidates of equivalent models
estimate.default

Estimation of functional of parameters
cancel

Generic cancel method
calcium

Longitudinal Bone Mineral Density Data
csplit

Split data into folds
curly

Adds curly brackets to plot
PD

Dose response calculation for binomial regression models
indoorenv

Data
cv

Cross-validation
intercept

Fix mean parameters in 'lvm'-object
hubble

Hubble data
devcoords

Returns device-coordinates and plot-region
binomial.rd

Define constant risk difference or relative risk association for binary exposure
baptize

Label elements of object
Range.lvm

Define range constraints of parameters
children

Extract children or parent elements of object
click

Identify points on plot
multinomial

Estimate probabilities in contingency table
mvnmix

Estimate mixture latent variable model
measurement.error

Two-stage (non-linear) measurement error
correlation

Generic method for extracting correlation coefficients of model object
missingdata

Missing data example
commutation

Finds the unique commutation matrix
closed.testing

Closed testing procedure
colorbar

Add color-bar to plot
compare

Statistical tests
confpred

Conformal prediction
predictlvm

Predict function for latent variable models
complik

Composite Likelihood for probit latent variable models
fplot

fplot
confband

Add Confidence limits bar to plot
covariance

Add covariance structure to Latent Variable Model
diagtest

Calculate diagnostic tests for 2x2 table
confint.lvmfit

Calculate confidence limits for parameters
dsep.lvm

Check d-separation criterion
intervention.lvm

Define intervention
startvalues

For internal use
rbind.Surv

Appending Surv objects
makemissing

Create random missing data
parpos

Generic method for finding indeces of model parameters
lvm

Initialize new latent variable model
estimate.lvm

Estimation of parameters in a Latent Variable Model (lvm)
subset.lvm

Extract subset of latent variable model
%++%

Concatenation operator
hubble2

Hubble data
lava-package

Estimation and simulation of latent variable models
plot.estimate

Plot method for 'estimate' objects
serotonin2

Data
pdfconvert

Convert pdf to raster format
serotonin

Serotonin data
%ni%

Matching operator (x not in y) oposed to the %in%-operator (x in y)
twostage

Two-stage estimator
twindata

Twin menarche data
summary.sim

Summary method for 'sim' objects
lava.options

Set global options for lava
vec

vec operator
vars

Extract variable names from latent variable model
pcor

Polychoric correlation
wait

Wait for user input (keyboard or mouse)
plot.lvm

Plot path diagram
partialcor

Calculate partial correlations
wkm

Weighted K-means
eventTime

Add an observed event time outcome to a latent variable model.
getMplus

Read Mplus output
path

Extract pathways in model graph
rmvar

Remove variables from (model) object.
images

Organize several image calls (for visualizing categorical data)
iid

Extract i.i.d. decomposition (influence function) from model object
getSAS

Read SAS output
mixture

Estimate mixture latent variable model.
ksmooth2

Plot/estimate surface
rotate2

Performs a rotation in the plane
gof

Extract model summaries and GOF statistics for model object
labels<-

Define labels of graph
modelsearch

Model searching
plot.sim

Plot method for simulation 'sim' objects
regression<-

Add regression association to latent variable model
sim.default

Wrapper function for mclapply
nldata

Example data (nonlinear model)
nsem

Example SEM data (nonlinear)
timedep

Time-dependent parameters
revdiag

Create/extract 'reverse'-diagonal matrix or off-diagonal elements
sim

Simulate model
spaghetti

Spaghetti plot
stack.estimate

Stack estimating equations
toformula

Converts strings to formula
trim

Trim string of (leading/trailing/all) white spaces
twostage.lvmfit

Two-stage estimator (non-linear SEM)
twostageCV

Cross-validated two-stage estimator
tr

Trace operator
ordinal<-

Define variables as ordinal
plotConf

Plot regression lines
ordreg

Univariate cumulative link regression models
predict.lvm

Prediction in structural equation models
scheffe

Calculate simultaneous confidence limits by Scheffe's method
wrapvec

Wrap vector
semdata

Example SEM data
zibreg

Regression model for binomial data with unkown group of immortals