Learn R Programming

Latent Variable Models: lava

A general implementation of Structural Equation Models with latent variables (MLE, 2SLS, and composite likelihood estimators) with both continuous, censored, and ordinal outcomes (Holst and Budtz-Joergensen (2013) <10.1007/s00180-012-0344-y>). Mixture latent variable models and non-linear latent variable models (Holst and Budtz-Joergensen (2020) <10.1093/biostatistics/kxy082>). The package also provides methods for graph exploration (d-separation, back-door criterion), simulation of general non-linear latent variable models, and estimation of influence functions for a broad range of statistical models.

Installation

install.packages("lava", dependencies=TRUE)
library("lava")
demo("lava")

For graphical capabilities the Rgraphviz package is needed (first install the BiocManager package)

# install.packages("BiocManager")
BiocManager::install("Rgraphviz")

or the igraph or visNetwork packages

install.packages("igraph")
install.packages("visNetwork")

The development version of lava may also be installed directly from github:

# install.packages("remotes")
remotes::install_github("kkholst/lava")

Citation

To cite that lava package please use one of the following references

Klaus K. Holst and Esben Budtz-Joergensen (2013). Linear Latent Variable Models: The lava-package. Computational Statistics 28 (4), pp 1385-1453. http://dx.doi.org/10.1007/s00180-012-0344-y

@article{lava,
  title = {Linear Latent Variable Models: The lava-package},
  author = {Klaus Kähler Holst and Esben Budtz-Jørgensen},
  year = {2013},
  volume = {28},
  number = {4},
  pages = {1385-1452},
  journal = {Computational Statistics},
  doi = {10.1007/s00180-012-0344-y}
}

Klaus K. Holst and Esben Budtz-Jørgensen (2020). A two-stage estimation procedure for non-linear structural equation models. Biostatistics 21 (4), pp 676-691. http://dx.doi.org/10.1093/biostatistics/kxy082

@article{lava_nlin,
  title = {A two-stage estimation procedure for non-linear structural equation models},
  author = {Klaus Kähler Holst and Esben Budtz-Jørgensen},
  journal = {Biostatistics},
  year = {2020},
  volume = {21},
  number = {4},
  pages = {676-691},
  doi = {10.1093/biostatistics/kxy082},
}

Examples

Structural Equation Model

Specify structural equation models with two factors

m <- lvm()
regression(m) <- y1 + y2 + y3 ~ eta1
regression(m) <- z1 + z2 + z3 ~ eta2
latent(m) <- ~ eta1 + eta2
regression(m) <- eta2 ~ eta1 + x
regression(m) <- eta1 ~ x

labels(m) <- c(eta1=expression(eta[1]), eta2=expression(eta[2]))
plot(m)

Simulation

d <- sim(m, 100, seed=1)

Estimation

e <- estimate(m, d)
e
#>                     Estimate Std. Error  Z-value   P-value
#> Measurements:                                             
#>    y2~eta1           0.95462    0.08083 11.80993    <1e-12
#>    y3~eta1           0.98476    0.08922 11.03722    <1e-12
#>     z2~eta2          0.97038    0.05368 18.07714    <1e-12
#>     z3~eta2          0.95608    0.05643 16.94182    <1e-12
#> Regressions:                                              
#>    eta1~x            1.24587    0.11486 10.84694    <1e-12
#>     eta2~eta1        0.95608    0.18008  5.30910 1.102e-07
#>     eta2~x           1.11495    0.25228  4.41951 9.893e-06
#> Intercepts:                                               
#>    y2               -0.13896    0.12458 -1.11537    0.2647
#>    y3               -0.07661    0.13869 -0.55241    0.5807
#>    eta1              0.15801    0.12780  1.23644    0.2163
#>    z2               -0.00441    0.14858 -0.02969    0.9763
#>    z3               -0.15900    0.15731 -1.01076    0.3121
#>    eta2             -0.14143    0.18380 -0.76949    0.4416
#> Residual Variances:                                       
#>    y1                0.69684    0.14858  4.69004          
#>    y2                0.89804    0.16630  5.40026          
#>    y3                1.22456    0.21182  5.78109          
#>    eta1              0.93620    0.19623  4.77084          
#>    z1                1.41422    0.26259  5.38570          
#>    z2                0.87569    0.19463  4.49934          
#>    z3                1.18155    0.22640  5.21883          
#>    eta2              1.24430    0.28992  4.29195

Model assessment

Assessing goodness-of-fit, here the linearity between eta2 and eta1 (requires the gof package)

# install.packages("gof", repos="https://kkholst.github.io/r_repo/")
library("gof")
set.seed(1)
g <- cumres(e, eta2 ~ eta1)
plot(g)

Non-linear measurement error model

Simulate non-linear model

m <- lvm(y1 + y2 + y3 ~ u, u ~ x)
transform(m,u2 ~ u) <- function(x) x^2
regression(m) <- z~u2+u

d <- sim(m,200,p=c("z"=-1, "z~u2"=-0.5), seed=1)

Stage 1:

m1 <- lvm(c(y1[0:s], y2[0:s], y3[0:s]) ~ 1*u, u ~ x)
latent(m1) <- ~ u
(e1 <- estimate(m1, d))
#>                     Estimate Std. Error  Z-value  P-value
#> Regressions:                                             
#>    u~x               1.06998    0.08208 13.03542   <1e-12
#> Intercepts:                                              
#>    u                -0.08871    0.08753 -1.01344   0.3108
#> Residual Variances:                                      
#>    y1                1.00054    0.07075 14.14214         
#>    u                 1.19873    0.15503  7.73233

Stage 2

pp <- function(mu,var,data,...) cbind(u=mu[,"u"], u2=mu[,"u"]^2+var["u","u"])
(e <- measurement.error(e1, z~1+x, data=d, predictfun=pp))
#>             Estimate Std.Err    2.5%   97.5%   P-value
#> (Intercept)  -1.1181 0.13795 -1.3885 -0.8477 5.273e-16
#> x            -0.0537 0.13213 -0.3127  0.2053 6.844e-01
#> u             1.0039 0.11504  0.7785  1.2294 2.609e-18
#> u2           -0.4718 0.05213 -0.5740 -0.3697 1.410e-19
f <- function(p) p[1]+p["u"]*u+p["u2"]*u^2
u <- seq(-1, 1, length.out=100)
plot(e, f, data=data.frame(u))

Simulation

Studying the small-sample properties of a mediation analysis

m <- lvm(y~x, c~1)
regression(m) <- y+x ~ z
eventTime(m) <- t~min(y=1, c=0)
transform(m,S~t+status) <- function(x) survival::Surv(x[,1],x[,2])
plot(m)

Simulate from model and estimate indirect effects

onerun <- function(...) {
    d <- sim(m, 100)
    m0 <- lvm(S~x+z, x~z)
    e <- estimate(m0, d, estimator="glm")
    vec(summary(effects(e, S~z))$coef[,1:2])
}
val <- sim(onerun, 100)
summary(val, estimate=1:4, se=5:8, short=TRUE)
#> 100 replications					Time: 3.667s
#> 
#>         Total.Estimate Direct.Estimate Indirect.Estimate S~x~z.Estimate
#> Mean           1.97292         0.96537           1.00755        1.00755
#> SD             0.16900         0.18782           0.15924        0.15924
#> SE             0.18665         0.18090           0.16431        0.16431
#> SE/SD          1.10446         0.96315           1.03183        1.03183
#>                                                                        
#> Min            1.47243         0.54497           0.54554        0.54554
#> 2.5%           1.63496         0.61228           0.64914        0.64914
#> 50%            1.95574         0.97154           0.99120        0.99120
#> 97.5%          2.27887         1.32443           1.27807        1.27807
#> Max            2.45746         1.49491           1.33446        1.33446
#>                                                                        
#> Missing        0.00000         0.00000           0.00000        0.00000

Add additional simulations and visualize results

val <- sim(val,500) ## Add 500 simulations
plot(val, estimate=c("Total.Estimate", "Indirect.Estimate"),
     true=c(2, 1), se=c("Total.Std.Err", "Indirect.Std.Err"),
     scatter.plot=TRUE)

Copy Link

Version

Install

install.packages('lava')

Monthly Downloads

147,300

Version

1.8.0

License

GPL-3

Maintainer

Last Published

March 5th, 2024

Functions in lava (1.8.0)

calcium

Longitudinal Bone Mineral Density Data
NR

Newton-Raphson method
backdoor

Backdoor criterion
bmidata

Data
commutation

Finds the unique commutation matrix
bootstrap

Generic bootstrap method
children

Extract children or parent elements of object
contr

Create contrast matrix
click

Identify points on plot
compare

Statistical tests
curly

Adds curly brackets to plot
cancel

Generic cancel method
diagtest

Calculate diagnostic tests for 2x2 table
correlation

Generic method for extracting correlation coefficients of model object
csplit

Split data into folds
constrain<-

Add non-linear constraints to latent variable model
devcoords

Returns device-coordinates and plot-region
indoorenv

Data
confband

Add Confidence limits bar to plot
measurement.error

Two-stage (non-linear) measurement error
complik

Composite Likelihood for probit latent variable models
bootstrap.lvm

Calculate bootstrap estimates of a lvm object
intercept

Fix mean parameters in 'lvm'-object
covariance

Add covariance structure to Latent Variable Model
iid

Extract i.i.d. decomposition from model object
hubble

Hubble data
brisa

Simulated data
missingdata

Missing data example
ksmooth2

Plot/estimate surface
confpred

Conformal prediction
dsep.lvm

Check d-separation criterion
estimate.array

Estimate parameters and influence function.
colorbar

Add color-bar to plot
estimate.lvm

Estimation of parameters in a Latent Variable Model (lvm)
confint.lvmfit

Calculate confidence limits for parameters
closed.testing

Closed testing procedure
equivalence

Identify candidates of equivalent models
nldata

Example data (nonlinear model)
images

Organize several image calls (for visualizing categorical data)
hubble2

Hubble data
nsem

Example SEM data (nonlinear)
multinomial

Estimate probabilities in contingency table
estimate.default

Estimation of functional of parameters
getSAS

Read SAS output
eventTime

Add an observed event time outcome to a latent variable model.
fplot

fplot
labels<-

Define labels of graph
parpos

Generic method for finding indeces of model parameters
%++%

Concatenation operator
makemissing

Create random missing data
lvm

Initialize new latent variable model
timedep

Time-dependent parameters
pcor

Polychoric correlation
path

Extract pathways in model graph
mvnmix

Estimate mixture latent variable model
gof

Extract model summaries and GOF statistics for model object
%ni%

Matching operator (x not in y) oposed to the %in%-operator (x in y)
startvalues

For internal use
partialcor

Calculate partial correlations
toformula

Converts strings to formula
revdiag

Create/extract 'reverse'-diagonal matrix or off-diagonal elements
regression<-

Add regression association to latent variable model
plotConf

Plot regression lines
vec

vec operator
sim.default

Monte Carlo simulation
serotonin2

Data
serotonin

Serotonin data
intervention.lvm

Define intervention
vars

Extract variable names from latent variable model
sim

Simulate model
twindata

Twin menarche data
twostage

Two-stage estimator
mixture

Estimate mixture latent variable model.
modelsearch

Model searching
predict.lvm

Prediction in structural equation models
getMplus

Read Mplus output
pdfconvert

Convert pdf to raster format
plot.estimate

Plot method for 'estimate' objects
lava-package

Estimation and simulation of latent variable models
predictlvm

Predict function for latent variable models
scheffe

Calculate simultaneous confidence limits by Scheffe's method
semdata

Example SEM data
spaghetti

Spaghetti plot
rbind.Surv

Appending Surv objects
lava.options

Set global options for lava
ordinal<-

Define variables as ordinal
ordreg

Univariate cumulative link regression models
plot.lvm

Plot path diagram
summary.sim

Summary method for 'sim' objects
subset.lvm

Extract subset of latent variable model
twostageCV

Cross-validated two-stage estimator
stack.estimate

Stack estimating equations
twostage.lvmfit

Two-stage estimator (non-linear SEM)
wait

Wait for user input (keyboard or mouse)
plot.sim

Plot method for simulation 'sim' objects
wkm

Weighted K-means
rmvar

Remove variables from (model) object.
rotate2

Performs a rotation in the plane
trim

Trim string of (leading/trailing/all) white spaces
tr

Trace operator
wrapvec

Wrap vector
zibreg

Regression model for binomial data with unkown group of immortals
Model

Extract model
Missing

Missing value generator
Combine

Report estimates across different models
Expand

Create a Data Frame from All Combinations of Factors
By

Apply a Function to a Data Frame Split by Factors
IC

Extract i.i.d. decomposition (influence function) from model object
binomial.rd

Define constant risk difference or relative risk association for binary exposure
Print

Generic print method
blockdiag

Combine matrices to block diagonal structure
baptize

Label elements of object
Range.lvm

Define range constraints of parameters
addvar

Add variable to (model) object
Col

Generate a transparent RGB color
NA2x

Convert to/from NA
bmd

Longitudinal Bone Mineral Density Data (Wide format)
Grep

Finds elements in vector or column-names in data.frame/matrix
Graph

Extract graph
PD

Dose response calculation for binomial regression models