parameterEstimates(object, se = TRUE, zstat = TRUE, pvalue = TRUE, ci = TRUE, level = 0.95, boot.ci.type = "perc", standardized = FALSE, fmi = FALSE, remove.system.eq = TRUE, remove.eq = TRUE, remove.ineq = TRUE, remove.def = FALSE, rsquare = FALSE, add.attributes = FALSE)
lavaan
.TRUE
, include column containing the standard
errors. If FALSE
, this implies zstat
and pvalue
and
ci
are also FALSE
.TRUE
, an extra column is added containing
the so-called z-statistic, which is simply the value of the estimate divided
by its standard error.TRUE
, an extra column is added containing
the pvalues corresponding to the z-statistic, evaluated under a standard
normal distribution.TRUE
, confidence intervals are added to the output"norm"
, "basic"
, "perc"
,
or "bca.simple"
. For the first three options, see the help page of
the boot.ci
function in the boot package. The
"bca.simple"
option produces intervals using the adjusted bootstrap
percentile (BCa) method, but with no correction for acceleration (only for
bias).TRUE
, standardized estimates are
added to the outputTRUE
, an extra column is added containing the
fraction of missing information for each estimated parameter. Only
available if
estimator="ML"
, missing="(fi)ml"
, and se="standard"
.
See references for more information.TRUE
, filter the output by removing all
rows containing user-specified equality constraints, if any.TRUE
, filter the output by
removing all rows containing system-generated equality constraints, if any.TRUE
, filter the output by removing all
rows containing inequality constraints, if any.TRUE
, filter the ouitput by removing all
rows containing parameter definitions, if any.TRUE
, add additional rows containing
the rsquare values (in the est
column) of all endogenous variables
in the model. Both the lhs
and rhs
column contain the
name of the endogenous variable, while the codeop column contains r2
,
to indicate that the values in the est
column are rsquare values.TRUE
, add a class attribute
(class lavaan.parameterEstimates
) and other attributes to be used by
the print function for this class (print.lavaan.parameterEstimates
).
This is used by the summary()
function, to prettify the output.HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit <- cfa(HS.model, data=HolzingerSwineford1939)
parameterEstimates(fit)
Run the code above in your browser using DataLab