################# Prediction from linear latent class model
data(data_hlme)
## fitted model
m<-lcmm(Y~Time*X1,mixture=~Time,random=~Time,classmb=~X2+X3,
subject='ID',ng=2,data=data_hlme,B=c(0.41,0.55,-0.18,-0.41,
-14.26,-0.34,1.33,13.51,24.65,2.98,1.18,26.26,0.97))
## newdata for predictions plot
newdata<-data.frame(Time=seq(0,5,length=100),
X1=rep(0,100),X2=rep(0,100),X3=rep(0,100))
plot.predict(m,newdata,"Time","right",bty="l")
## data from the first subject for predictions plot
firstdata<-data_hlme[1:3,]
plot.predict(m,firstdata,"Time","right",bty="l")
################# Prediction from a joint latent class model
data(data_Jointlcmm)
## fitted model - see help of Jointlcmm function for details on the model
m3 <- Jointlcmm(fixed= Ydep1~Time*X1,mixture=~Time,random=~Time,
classmb=~X3,subject='ID',survival = Surv(Tevent,Event)~X1+mixture(X2),
hazard="3-quant-splines",hazardtype="PH",ng=3,data=data_Jointlcmm,
B=c(0.7667, 0.4020, -0.8243, -0.2726, 0.0000, 0.0000, 0.0000, 0.3020,
-0.6212, 2.6247, 5.3139, -0.0255, 1.3595, 0.8172, -11.6867, 10.1668,
10.2355, 11.5137, -2.6209, -0.4328, -0.6062, 1.4718, -0.0378, 0.8505,
0.0366, 0.2634, 1.4981))
# class-specific predicted trajectories
#(with characteristics of subject ID=193)
data <- data_Jointlcmm[data_Jointlcmm$ID==193,]
plot.predict(m3,var.time="Time",newdata=data,bty="l")
Run the code above in your browser using DataLab