Log-likelihood of hlme, lcmm, multlcmm, Jointlcmm and mpjlcmm models. The argument's specification is not straightforward, so these functions are usually not directly used.
loglikhlme(
b,
Y0,
X0,
prior0,
pprior0,
idprob0,
idea0,
idg0,
idcor0,
ns0,
ng0,
nv0,
nobs0,
nea0,
nmes0,
idiag0,
nwg0,
ncor0,
npm0,
fix0,
nfix0,
bfix0
)logliklcmm(
b,
Y0,
X0,
prior0,
pprior0,
idprob0,
idea0,
idg0,
idcor0,
ns0,
ng0,
nv0,
nobs0,
nea0,
nmes0,
idiag0,
nwg0,
ncor0,
npm0,
epsY0,
idlink0,
nbzitr0,
zitr0,
minY0,
maxY0,
ide0,
fix0,
nfix0,
bfix0
)
loglikmultlcmm(
b,
Y0,
X0,
prior0,
pprior0,
idprob0,
idea0,
idg0,
idcor0,
idcontr0,
ny0,
ns0,
ng0,
nv0,
nobs0,
nea0,
nmes0,
idiag0,
nwg0,
ncor0,
nalea0,
npm0,
epsY0,
idlink0,
nbzitr0,
zitr0,
uniqueY0,
indiceY0,
nvalSPLORD0,
fix0,
nfix0,
bfix0,
methInteg0,
nMC0,
dimMC0,
seqMC0,
chol0
)
loglikJointlcmm(
b,
Y0,
X0,
prior0,
pprior0,
tentr0,
tevt0,
devt0,
ind_survint0,
idprob0,
idea0,
idg0,
idcor0,
idcom0,
idspecif0,
idtdv0,
idlink0,
epsY0,
nbzitr0,
zitr0,
uniqueY0,
nvalSPL0,
indiceY0,
typrisq0,
risqcom0,
nz0,
zi0,
ns0,
ng0,
nv0,
nobs0,
nmes0,
nbevt0,
nea0,
nwg0,
ncor0,
idiag0,
idtrunc0,
logspecif0,
npm0,
fix0,
nfix0,
bfix0
)
loglikmpjlcmm(
b,
K0,
ny0,
nbevt0,
ng0,
ns0,
Y0,
nobs0,
X0,
nv0,
Xns0,
nv20,
prior0,
Tentr0,
Tevt0,
Devt0,
ind_survint0,
idnv0,
idnv20,
idspecif0,
idlink0,
epsY0,
nbzitr0,
zitr0,
uniqueY0,
nvalSPL0,
indiceY0,
typrisq0,
risqcom0,
nz0,
zi0,
nmes0,
nea0,
nw0,
ncor0,
nalea0,
idiag0,
idtrunc0,
logspecif0,
npm0,
fix0,
contrainte0,
nfix0,
bfix0
)
the log-likelihood
the vector of estimated parameters (length npm0)
the observed values of the outcome(s) (length nobs0)
the observed values of all covariates included in the model (dim nob0 * nv0)
the prior latent class (length ns0)
the prior probabilty of each latent class (dim ns0 * ng0)
indicator of presence in the class membership submodel (length nv0)
indicator of presence in the random part of the longitudinal submodel (length nv0)
indicator of presence in the fixed part of the longitudinal submodel (length nv0)
indicator of presence in the correlation part of the longitudinal submodel (length nv0)
number of subjects
number of latent classes
number of covariates
number of observations
number of random effects
number of mesures for each subject (length ns0 or dom ns0*ny0)
indicator of diagonal variance matrix of the random effects
number of parameters for proportional random effects over latent classes
number of parameters for the correlation
total number of parameters
indicator of non estimated parameter (length npm0+nfix0)
number of non estimated parameters
vector of non estimated parameters
epsY values for Beta transformations
type of transformation
number of nodes for the transformations
nodes for the transformations
minimum value for the longitudinal outcome
maximum value for the longitudinal outcome
indicator of observed values for ordinal outcomes
indicator of presence as contrast in the fixed part of the longitudinal submodel (length nv0)
number of longitudinal outcomes
number of parameters f the outcome specific random effect
unique values of the longitudinal outcomes
correspondance between Y0 and uniqueY0
number of unique values for outcomes modeled with splines transformations or as ordinal outcome
type of integration
number of nodes for Monte Carlo integration
dimension of the integration
sequence of integration nodes
indicator of Cholesky parameterization
entry time for the survival submodel
event time for the survival submodel
indicator of event for the survival submodel
indicator of risk change
indicator of presence in the survival submodel with common effect
indicator of presence in the survival submodel with cause-specific or class specific effect
indicator of 'TimeDepVar' covariate
number of unique values for outcomes modeled with splines transformations
type of baseline risk
specification of baseline risk across latent classes
number of nodes for the baseline
nodes for the baseline
number of events
indicator of left truncation
indicator of logarithm parameterization
number of latent processes
the observed values of the covariates included in the survival submodel (dim ns0*nv20)
number of covariates in Xns0
entry time for the survival submodel (length ns0)
event time for the survival submodel (length ns0)
indicator of event for the survival submodel (length ns0)
indicator of presence in each subpart of the longitudinal models (length 4*sum(nv0))
indicator of presence in each subpart of the survival models (length 3*nv20)
number of parameters for proportional random effects over latent classes
type of identifiability constraints
Cecile Proust-Lima, Viviane Philipps