Learn R Programming

ldaPrototype (version 0.3.1)

getTopics: Getter for LDA

Description

Returns the corresponding element of a LDA object. getEstimators computes the estimators for phi and theta.

Usage

getTopics(x)

getAssignments(x)

getDocument_sums(x)

getDocument_expects(x)

getLog.likelihoods(x)

getParam(x)

getK(x)

getAlpha(x)

getEta(x)

getNum.iterations(x)

getEstimators(x)

Arguments

x

[named list] LDA object.

Details

The estimators for phi and theta in $$w_n^{(m)} \mid T_n^{(m)}, \bm\phi_k \sim \textsf{Discrete}(\bm\phi_k),$$ $$\bm\phi_k \sim \textsf{Dirichlet}(\eta),$$ $$T_n^{(m)} \mid \bm\theta_m \sim \textsf{Discrete}(\bm\theta_m),$$ $$\bm\theta_m \sim \textsf{Dirichlet}(\alpha)$$ are calculated referring to Griffiths and Steyvers (2004) by $$\hat{\phi}_{k, v} = \frac{n_k^{(v)} + \eta}{n_k + V \eta},$$ $$\hat{\theta}_{m, k} = \frac{n_k^{(m)} + \alpha}{N^{(m)} + K \alpha}$$ with \(V\) is the vocabulary size, \(K\) is the number of modeled topics; \(n_k^{(v)}\) is the count of assignments of the \(v\)-th word to the \(k\)-th topic. Analogously, \(n_k^{(m)}\) is the count of assignments of the \(m\)-th text to the \(k\)-th topic. \(N^{(m)}\) is the total number of assigned tokens in text \(m\) and \(n_k\) the total number of assigned tokens to topic \(k\).

References

Griffiths, Thomas L. and Mark Steyvers (2004). "Finding scientific topics". In: Proceedings of the National Academy of Sciences 101 (suppl 1), pp.5228--5235, 10.1073/pnas.0307752101.

See Also

Other getter functions: getJob(), getSCLOP(), getSimilarity()

Other LDA functions: LDABatch(), LDARep(), LDA()