# construct data frame
mydata <- read.table(text="Severity Description
1 Mild
4 Moderate
3 Moderate
2 Mild
1 Severe", header=TRUE)
# recode Severity into a new variable called SevereNew
Recode(Severity, new.vars="SevereNew", old=1:4, new=c(10,20,30,40))
# abbreviated form, replace original with recoded
# another option, the sequence function, to generate list of values
rec(Severity, old=1:4, new=seq(10,40,by=10))
# reverse score four Likert variables: m01, m02, m03, m10
# data in a different data frame than mydata
data(dataMach4)
Recode(c(m01:m03,m10), old=0:5, new=5:0, dframe=dataMach4)
# for four Likert variables, convert any 0 or 1 to missing
# use Read to put data into mydata dataframe
Read(lessR.data="Employee")
Recode(HealthPlan, old=1, new="missing")
# for four Likert variables, convert any missing value to 99
Read(lessR.data="Employee")
Recode(c(Years, Salary), old="missing", new=99)
# recode levels of a factor with the Transform and factor functions
# using Recode destroys the factor attribute, converting to
# character strings instead, so Recode does not allow
Read(lessR.data="Employee")
Transform(
Gender=factor(Gender, levels=c("F", "M"), labels=c("Female", "Male"))
)
Run the code above in your browser using DataLab