Learn R Programming

lessSEM (version 1.5.5)

.smoothAdaptiveLASSOHessian: .smoothAdaptiveLASSOHessian

Description

smoothed version of non-differentiable adaptive LASSO Hessian

Usage

.smoothAdaptiveLASSOHessian(
  parameters,
  tuningParameters,
  penaltyFunctionArguments
)

Value

Hessian matrix

Arguments

parameters

vector with labeled parameter values

tuningParameters

list with fields lambdas (vector with one tuning parameter value for each parameter)

penaltyFunctionArguments

list with fields regularizedParameterLabels (labels of regularized parameters), and eps (controls the smooth approximation of non-differential penalty functions (e.g., lasso, adaptive lasso, or elastic net). Smaller values result in closer approximation, but may also cause larger issues in optimization.)