Learn R Programming

lessSEM (version 1.5.5)

newTau: newTau

Description

assign new value to parameter tau used by approximate optimization. Any regularized value below tau will be evaluated as zeroed which directly impacts the AIC, BIC, etc.

Usage

newTau(regularizedSEM, tau)

Value

regularizedSEM, but with new regularizedSEM@fits$nonZeroParameters

Arguments

regularizedSEM

object fitted with approximate optimization

tau

new tau value

Examples

Run this code
library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
     l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
     l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
                           data = dataset,
                           meanstructure = TRUE,
                           std.lv = TRUE)

# Regularization:

lsem <- smoothLasso(
  # pass the fitted lavaan model
  lavaanModel = lavaanModel,
  # names of the regularized parameters:
  regularized = paste0("l", 6:15),
  epsilon = 1e-10,
  tau = 1e-4,
  lambdas = seq(0,1,length.out = 50))
newTau(regularizedSEM = lsem, tau = .1)

Run the code above in your browser using DataLab