library(lessSEM)
# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.
dataset <- simulateExampleData()
lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"
lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)
# Stability selection
stabSel <- stabilitySelection(
# IMPORTANT: Wrap your call to the penalty function in an rlang::expr-Block:
modelSpecification =
rlang::expr(
lasso(
# pass the fitted lavaan model
lavaanModel = lavaanModel,
# names of the regularized parameters:
regularized = paste0("l", 6:15),
# in case of lasso and adaptive lasso, we can specify the number of lambda
# values to use. lessSEM will automatically find lambda_max and fit
# models for nLambda values between 0 and lambda_max. For the other
# penalty functions, lambdas must be specified explicitly
nLambdas = 50)
),
subsampleSize = 80,
numberOfSubsamples = 5, # should be set to a much higher number (e.g., 100)
threshold = 70
)
stabSel
plot(stabSel)
Run the code above in your browser using DataLab