# NOT RUN {
library(text2vec)
library(xgboost)
data(train_sentences)
data(test_sentences)
get_matrix <- function(text) {
it <- itoken(text, progressbar = FALSE)
create_dtm(it, vectorizer = hash_vectorizer())
}
dtm_train = get_matrix(train_sentences$text)
xgb_model <- xgb.train(list(max_depth = 7, eta = 0.1, objective = "binary:logistic",
eval_metric = "error", nthread = 1),
xgb.DMatrix(dtm_train, label = train_sentences$class.text == "OWNX"),
nrounds = 50)
sentences <- head(test_sentences[test_sentences$class.text == "OWNX", "text"], 1)
explainer <- lime(train_sentences$text, xgb_model, get_matrix)
# The explainer can now be queried interactively:
# }
# NOT RUN {
interactive_text_explanations(explainer)
# }
Run the code above in your browser using DataLab