## Not run:
# # Subset of data from ApoAI case study in Limma User's Guide
# # Avoid non-positive intensities
# RG <- backgroundCorrect(RG,method="normexp")
# MA <- normalizeWithinArrays(RG)
# MA <- normalizeBetweenArrays(MA,method="Aq")
# targets <- data.frame(Cy3=I(rep("Pool",6)),Cy5=I(c("WT","WT","WT","KO","KO","KO")))
# targets.sc <- targetsA2C(targets)
# targets.sc$Target <- factor(targets.sc$Target,levels=c("Pool","WT","KO"))
# design <- model.matrix(~Target,data=targets.sc)
# corfit <- intraspotCorrelation(MA,design)
# fit <- lmscFit(MA,design,correlation=corfit$consensus)
# cont.matrix <- cbind(KOvsWT=c(0,-1,1))
# fit2 <- contrasts.fit(fit,cont.matrix)
# fit2 <- eBayes(fit2)
# topTable(fit2,adjust="fdr")
# ## End(Not run)
Run the code above in your browser using DataLab