## Not run:
# # This example is designed for work on a subset of the data
# # from ApoAI case study in Limma User's Guide
#
# RG <- backgroundCorrect(RG, method="normexp")
# MA <- normalizeWithinArrays(RG)
# targets <- data.frame(Cy3=I(rep("Pool",6)),Cy5=I(c("WT","WT","WT","KO","KO","KO")))
# design <- modelMatrix(targets, ref="Pool")
# subarrayw <- printtipWeights(MA, design, layout=mouse.setup)
# fit <- lmFit(MA, design, weights=subarrayw)
# fit2 <- contrasts.fit(fit, contrasts=c(-1,1))
# fit2 <- eBayes(fit2)
# # Use of sub-array weights increases the significance of the top genes
# topTable(fit2)
# # Create an image plot of sub-array weights from each array
# zlim <- c(min(subarrayw), max(subarrayw))
# par(mfrow=c(3,2), mai=c(0.1,0.1,0.3,0.1))
# for(i in 1:6)
# imageplot(subarrayw[,i], layout=mouse.setup, zlim=zlim, main=paste("Array", i))
# ## End(Not run)
Run the code above in your browser using DataLab