# NOT RUN {
if(Sys.getenv("RUN_EXPENSIVE") == "true") {
data(satsolvers)
folds = cvFolds(satsolvers)
res = classify(classifier=makeLearner("classif.J48"), data=folds)
# the total number of successes
sum(successes(folds, res))
# predictions on the entire data set
res$predictor(satsolvers$data[satsolvers$features])
res = classify(classifier=makeLearner("classif.svm"), data=folds)
# use probabilities instead of labels
res = classify(classifier=makeLearner("classif.randomForest", predict.type = "prob"), data=folds)
# ensemble classification
rese = classify(classifier=list(makeLearner("classif.J48"),
makeLearner("classif.IBk"),
makeLearner("classif.svm")),
data=folds)
# ensemble classification with a classifier to combine predictions
rese = classify(classifier=list(makeLearner("classif.J48"),
makeLearner("classif.IBk"),
makeLearner("classif.svm"),
.combine=makeLearner("classif.J48")),
data=folds)
}
# }
Run the code above in your browser using DataLab