Learn R Programming

lle (version 1.1)

calc_k: Calculation of the optimal number of neighbours.

Description

Calculates of optimal number of neighbours by using the algorithm proposed by Kayo (see Ref.). Therefore the LLE alorithm is performed for every k-neighbourhood size.

Usage

calc_k(X, m, kmin=1, kmax=20, plotres=TRUE, parallel=FALSE, cpus=2, iLLE=FALSE)

Arguments

X
matrix object containing the input data.
m
intrinsic dimension of the data.
kmin
minimal value of k.
kmax
maximal value of k.
plotres
a logical values indicating wheather to plot the result.
parallel
a logical values indicating wheather to use parallel computation on multiple cpu cores. See snowfall.
cpus
number of cpus cores used for parallel computation.
iLLE
a logical values indicating wheater to use improved LLE (very CPU intensive). See lle.

Value

res
dataframe containing the number of neighbours and the calculated parameter $\rho$. The number of neighbours belonging to the smallest value of $\rho$ should be chosen.

Details

Since the calculation of the optimal number of neighbours $m$ is a step that is normally applied before the execution of LLE itself, the intrinsic dimension may be unknown. In this case, a good guess is sufficient. If no good estimation can be made the largest plausible value should be chosen.

References

Locally linear embedding algorithm - extensions and applications / Olga Kayo / Universitatis Ouluensis, Oulu, Finland / 2006

Examples

Run this code
   ## Not run: 
# 	data( lle_scurve_data )
# 	X <- lle_scurve_data
# 	calc_k( X, 2, 1, 15 ) 
# 
# 	data( lle_scurve_data )
# 	X <- lle_scurve_data
# 	calc_k( X, 2, 1, 15, FALSE, TRUE, 4 ) 
#    ## End(Not run)

Run the code above in your browser using DataLab