Learn R Programming

lmap (version 0.2.4)

clmdu: Cumulative Logistic (Restricted) MDU

Description

Cumulative Logistic (Restricted) MDU

Usage

clmdu(
  Y,
  X = NULL,
  S = 2,
  trace = FALSE,
  start = "svd",
  maxiter = 65536,
  dcrit = 1e-06
)

Value

Y Matrix Y from input

Xoriginal Matrix X from input

X Scaled X matrix

mx Mean values of X

sdx Standard deviations of X

ynames Variable names of responses

xnames Variable names of predictors

probabilities Estimated values of Y

m main effects

U matrix with coordinates for row-objects

B matrix with regression weight (U = XB)

V matrix with vectors for items/responses

iter number of main iterations from the MM algorithm

deviance value of the deviance at convergence

Arguments

Y

An N times R ordinal matrix coded with integers 1,2,.. .

X

An N by P matrix with predictor variables

S

Positive number indicating the dimensionality of the solution

trace

boolean to indicate whether the user wants to see the progress of the function (default=TRUE)

start

either starting values (list with (U,V) or (B,V)) or way to compute them (svd, random, ca)

maxiter

maximum number of iterations

dcrit

convergence criterion

Examples

Run this code
if (FALSE) {
data(dataExample_clmdu)
Y<-dataExample_clmdu
X<-dataExample_clmdu
output1 = clmdu(Y)
plot(output1)
plot(output1, circles = NULL)
summary(output1)

output2 = clmdu(Y = Y, X = X)
plot(output2, circles = c(1,2))
summary(output2)
}

Run the code above in your browser using DataLab