mcd1: Multinomial Canonical Decomposition Model for Multivariate Binary Data
Description
The function mcd1 fits the multinomial canonical decomposition model to multivariate binary responses
i.e. a double constrained reduced rank multinomial logistic model
Usage
mcd1(
X,
Y,
S = 2,
Z = NULL,
W = NULL,
ord.z = 1,
ord.m = R,
trace = FALSE,
maxiter = 65536,
dcrit = 1e-06
)
Value
This function returns an object of the class mcd with components:
call
function call
Xoriginal
Matrix X from input
X
Scaled X matrix
mx
Mean values of X
sdx
Standard deviations of X
Y
Matrix Y from input
pnames
Variable names of profiles
xnames
Variable names of predictors
znames
Variable names of responses
Z
Design matrix Z
W
Design matrix W
G
Profile indicator matrix G
m
main effects
bm
regression weights for main effects
Bx
regression weights for X
Bz
regression weights for Z
A
regression weights (Bx Bz')
U
matrix with coordinates for row-objects
V
matrix with coordinates for column-objects
Ghat
Estimated values of G
deviance
value of the deviance at convergence
df
number of paramters
AIC
Akaike's informatoin criterion
iter
number of main iterations from the MM algorithm
svd
Singular value decomposition in last iteration
Arguments
X
An N by P matrix with predictor variables
Y
An N times R binary matrix .
S
Positive number indicating the dimensionality of teh solution
Z
design matrix for response
W
design matrix for intercepts
ord.z
if Z = NULL, the function creates Z having order ord.z
ord.m
if W = NULL, the function creates W having order ord.m
trace
whether progress information should be printed on the screen
if (FALSE) {
data(dataExample_lpca)
Y = as.matrix(dataExample_lpca[ , 1:5])
X = as.matrix(dataExample_lpca[ , 9:13])
#unsupervisedoutput = mcd1(X, Y, S = 2, ord.z = 2)
}