Learn R Programming

lme4 (version 0.99875-9)

mcmcsamp: Generate an MCMC sample

Description

This generic function generates a sample from the posterior distribution of the parameters of a fitted model using Markov Chain Monte Carlo methods.

Usage

mcmcsamp(object, n, verbose, ...)

Arguments

object
An object of a suitable class - usually an lmer or glmer object.
n
integer - number of samples to generate. Defaults to 1.
verbose
logical - if TRUE verbose output is printed. Defaults to FALSE.
...
Some methods for this generic function may take additional, optional arguments. The method for lmer objects takes the optional argument saveb which, if TRUE, causes the values

Value

  • An object of (S3) class "mcmc" suitable for use with the functions in the "coda" package.

Examples

Run this code
(fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))
set.seed(101); samp0 <- mcmcsamp(fm1, n = 1000) # default deviance = FALSE
set.seed(101); samp1 <- mcmcsamp(fm1, n = 1000, deviance = TRUE)
colnames(samp1) # has "deviance"
if (require("coda", quietly = TRUE, character.only = TRUE)) {
    densityplot(samp1)
    qqmath(samp1)
    xyplot(samp1, scales = list(x = list(axs = 'i')))
    print(summary(samp1))
    print(autocorr.diag(samp1))
}
## potentially useful approximate D.F. :
(eDF <- mean(samp1[,"deviance"]) - deviance(fm1, REML=FALSE))
stopifnot(abs(eDF - 7) < 1,
          all.equal(samp0, samp1[,1:6], tol=0))

Run the code above in your browser using DataLab