# NOT RUN {
## linear mixed models - reference values from older code
(fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy))
summary(fm1)# (with its own print method; see class?merMod % ./merMod-class.Rd
str(terms(fm1))
stopifnot(identical(terms(fm1, fixed.only=FALSE),
terms(model.frame(fm1))))
attr(terms(fm1, FALSE), "dataClasses") # fixed.only=FALSE needed for dataCl.
fm1_ML <- update(fm1,REML=FALSE)
(fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy))
anova(fm1, fm2)
sm2 <- summary(fm2)
print(fm2, digits=7, ranef.comp="Var") # the print.merMod() method
print(sm2, digits=3, corr=FALSE) # the print.summary.merMod() method
(vv <- vcov.merMod(fm2, corr=TRUE))
as(vv, "corMatrix")# extracts the ("hidden") 'correlation' entry in @factors
## Fit sex-specific variances by constructing numeric dummy variables
## for sex and sex:age; in this case the estimated variance differences
## between groups in both intercept and slope are zero ...
data(Orthodont,package="nlme")
Orthodont$nsex <- as.numeric(Orthodont$Sex=="Male")
Orthodont$nsexage <- with(Orthodont, nsex*age)
lmer(distance ~ age + (age|Subject) + (0+nsex|Subject) +
(0 + nsexage|Subject), data=Orthodont)
# }
Run the code above in your browser using DataLab