Learn R Programming

lme4 (version 1.1-36)

confint.merMod: Compute Confidence Intervals for Parameters of a [ng]lmer Fit

Description

Compute confidence intervals on the parameters of a *lmer() model fit (of class"merMod").

Usage

# S3 method for merMod
confint(object, parm, level = 0.95,
	method = c("profile", "Wald", "boot"), zeta,
	nsim = 500,
        boot.type = c("perc","basic","norm"),
        FUN = NULL, quiet = FALSE,
	oldNames = TRUE, ...)
# S3 method for thpr
confint(object, parm, level = 0.95,
        zeta, non.mono.tol=1e-2,
	...)

Value

a numeric table (matrix with column and row names) of confidence intervals; the confidence intervals are computed on the standard deviation scale.

Arguments

object

a fitted [ng]lmer model or profile

parm

parameters for which intervals are sought. Specified by an integer vector of positions, character vector of parameter names, or (unless doing parametric bootstrapping with a user-specified bootstrap function) "theta_" or "beta_" to specify variance-covariance or fixed effects parameters only: see the which parameter of profile.

level

confidence level \(< 1\), typically above 0.90.

method

a character string determining the method for computing the confidence intervals.

zeta

(for method = "profile" only:) likelihood cutoff (if not specified, as by default, computed from level).

nsim

number of simulations for parametric bootstrap intervals.

FUN

bootstrap function; if NULL, an internal function that returns the fixed-effect parameters as well as the random-effect parameters on the standard deviation/correlation scale will be used. See bootMer for details.

boot.type

bootstrap confidence interval type, as described in boot.ci. (Methods ‘stud’ and ‘bca’ are unavailable because they require additional components to be calculated.)

quiet

(logical) suppress messages about computationally intensive profiling?

oldNames

(logical) use old-style names for variance-covariance parameters, e.g. ".sig01", rather than newer (more informative) names such as "sd_(Intercept)|Subject"? (See signames argument to profile).

non.mono.tol

tolerance for detecting a non-monotonic profile and warning/falling back to linear interpolation

...

additional parameters to be passed to profile.merMod or bootMer, respectively.

Details

Depending on the method specified, confint() computes confidence intervals by

"profile":

computing a likelihood profile and finding the appropriate cutoffs based on the likelihood ratio test;

"Wald":

approximating the confidence intervals (of fixed-effect parameters only; all variance-covariance parameters CIs will be returned as NA) based on the estimated local curvature of the likelihood surface;

"boot":

performing parametric bootstrapping with confidence intervals computed from the bootstrap distribution according to boot.type (see bootMer, boot.ci).

Examples

Run this code
if (interactive() || lme4_testlevel() >= 3) {
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
fm1W <- confint(fm1, method="Wald")# very fast, but not useful for "sigmas" = var-cov pars
fm1W
(fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy))
(CI2 <- confint(fm2, maxpts = 8)) # method = "profile"; 8: to be much faster
 stopifnot(all.equal(tolerance = 5e-6, signif(unname(CI2), 7),
               array(c(15.25847, 3.964157, 22.88062, 237.5732,  7.33431,
                       37.78184, 8.768238, 28.78768, 265.2383, 13.60057),
                     dim = c(5L, 2L))))

if (lme4_testlevel() >= 3) {
  system.time(fm1P <- confint(fm1, method="profile", ## <- default
                              oldNames = FALSE))
  ## --> ~ 2.2 seconds (2022)
  set.seed(123) # (reproducibility when using bootstrap)
  system.time(fm1B <- confint(fm1, method="boot", oldNames=FALSE,
                              .progress="txt", PBargs= list(style=3)))
  ## --> ~ 6.2 seconds (2022) and warning, messages
} else {
    load(system.file("testdata","confint_ex.rda",package="lme4"))
}
fm1P
fm1B
} ## if interactive && testlevel>=3

Run the code above in your browser using DataLab