## Not run:
# data(kidneySimTimeGroup)
# G1 <- kidneySimTimeGroup$group=="G1"
# noiseTest <-investNoise(data=kidneySimTimeGroup$data[G1,],time=kidneySimTimeGroup$time[G1],
# sampleID=kidneySimTimeGroup$sampleID[G1])
# data <-filterNoise(data=kidneySimTimeGroup$data[G1,],noise=noiseTest,RTCutoff=0.9,
# RICutoff=0.3,propMissingCutoff=0.5)$data
#
#
# #Alternatively model-based clustering can be used for filtering
# library(mclust)
# clusterFilter <- Mclust(cbind(noiseTest@RT,noiseTest@RI),G=2)
# plot(clusterFilter,what = "classification")
# meanRTCluster <-tapply(noiseTest@RT,clusterFilter$classification,mean)
# bestCluster <- names(meanRTCluster[which.min(meanRTCluster)])
# filterdata <- kidneySimTimeGroup$data[G1,clusterFilter$classification==bestCluster]
#
# ## End(Not run)
Run the code above in your browser using DataLab