Learn R Programming

lmom (version 3.2)

cdfgpa: Generalized Pareto distribution

Description

Distribution function and quantile function of the generalized Pareto distribution.

Usage

cdfgpa(x, para = c(0, 1, 0))
quagpa(f, para = c(0, 1, 0))

Value

cdfgpa gives the distribution function;

quagpa gives the quantile function.

Arguments

x

Vector of quantiles.

f

Vector of probabilities.

para

Numeric vector containing the parameters of the distribution, in the order \(\xi, \alpha, k\) (location, scale, shape).

Details

The generalized Pareto distribution with location parameter \(\xi\), scale parameter \(\alpha\) and shape parameter \(k\) has distribution function $$F(x)=1-\exp(-y)$$ where $$y=-k^{-1}\log\lbrace1-k(x-\xi)/\alpha\rbrace,$$ with \(x\) bounded by \(\xi+\alpha/k\) from below if \(k<0\) and from above if \(k>0\), and quantile function $$x(F)=\xi+{\alpha\over k}\lbrace 1-(1-F)^k\rbrace.$$

The exponential distribution is the special case \(k=0\). The uniform distribution is the special case \(k=1\).

References

Hosking, J. R. M., and Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29, 339-349.

Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) of meteorological elements. Quarterly Journal of the Royal Meteorological Society, 81, 158-171.

See Also

cdfexp for the exponential distribution.

cdfkap for the kappa distribution and cdfwak for the Wakeby distribution, which generalize the generalized Pareto distribution.

Examples

Run this code
# Random sample from the generalized Pareto distribution
# with parameters xi=0, alpha=1, k=-0.5.
quagpa(runif(100), c(0,1,-0.5))

Run the code above in your browser using DataLab