Learn R Programming

lmom (version 3.2)

lmr-functions: L-moments of specific probability distributions

Description

Computes the \(L\)-moments of a probability distribution given its parameters. The following distributions are recognized:

lmrexpexponential
lmrgamgamma
lmrgevgeneralized extreme-value
lmrglogeneralized logistic
lmrgpageneralized Pareto
lmrgnogeneralized normal
lmrgumGumbel (extreme-value type I)
lmrkapkappa
lmrln3three-parameter lognormal
lmrnornormal
lmrpe3Pearson type III
lmrwakWakeby
lmrweiWeibull

Usage

lmrexp(para = c(0, 1), nmom = 2)
lmrgam(para = c(1, 1), nmom = 2)
lmrgev(para = c(0, 1, 0), nmom = 3)
lmrglo(para = c(0, 1, 0), nmom = 3)
lmrgno(para = c(0, 1, 0), nmom = 3)
lmrgpa(para = c(0, 1, 0), nmom = 3)
lmrgum(para = c(0, 1), nmom = 2)
lmrkap(para = c(0, 1, 0, 0), nmom = 4)
lmrln3(para = c(0, 0, 1), nmom = 3)
lmrnor(para = c(0, 1), nmom = 2)
lmrpe3(para = c(0, 1, 0), nmom = 3)
lmrwak(para = c(0, 1, 0, 0, 0), nmom = 5)
lmrwei(para = c(0, 1, 1), nmom = 3)

Value

Numeric vector containing the \(L\)-moments.

Arguments

para

Numeric vector containing the parameters of the distribution.

nmom

The number of \(L\)-moments to be calculated.

Author

J. R. M. Hosking jrmhosking@gmail.com

Details

Numerical methods and accuracy are as described in Hosking (1996, pp. 8--9).

References

Hosking, J. R. M. (1996). Fortran routines for use with the method of \(L\)-moments, Version 3. Research Report RC20525, IBM Research Division, Yorktown Heights, N.Y.

See Also

lmrp to compute \(L\)-moments of a general distribution specified by its cumulative distribution function or quantile function.

samlmu to compute \(L\)-moments of a data sample.

pelexp, etc., to compute the parameters of a distribution given its \(L\)-moments.

For individual distributions, see their cumulative distribution functions:

cdfexpexponential
cdfgamgamma
cdfgevgeneralized extreme-value
cdfglogeneralized logistic
cdfgpageneralized Pareto
cdfgnogeneralized normal
cdfgumGumbel (extreme-value type I)
cdfkapkappa
cdfln3three-parameter lognormal
cdfnornormal
cdfpe3Pearson type III
cdfwakWakeby
cdfweiWeibull

Examples

Run this code
# Compare sample L-moments of Ozone from the airquality data
# with the L-moments of a GEV distribution fitted to the data
data(airquality)
smom <- samlmu(airquality$Ozone, nmom=6)
gevpar <- pelgev(smom)
pmom <- lmrgev(gevpar, nmom=6)
print(smom)
print(pmom)

Run the code above in your browser using DataLab