Computes the parameters of a probability distribution as a function of the \(L\)-moments. The following distributions are recognized:
pelexp | exponential | |
pelgam | gamma | |
pelgev | generalized extreme-value | |
pelglo | generalized logistic | |
pelgpa | generalized Pareto | |
pelgno | generalized normal | |
pelgum | Gumbel (extreme-value type I) | |
pelkap | kappa | |
pelln3 | three-parameter lognormal | |
pelnor | normal | |
pelpe3 | Pearson type III | |
pelwak | Wakeby | |
pelwei | Weibull |
pelexp(lmom)
pelgam(lmom)
pelgev(lmom)
pelglo(lmom)
pelgno(lmom)
pelgpa(lmom, bound = NULL)
pelgum(lmom)
pelkap(lmom)
pelln3(lmom, bound = NULL)
pelnor(lmom)
pelpe3(lmom)
pelwak(lmom, bound = NULL, verbose = FALSE)
pelwei(lmom, bound = NULL)
A numeric vector containing the parameters of the distribution.
Numeric vector containing the \(L\)-moments of the distribution or of a data sample.
Lower bound of the distribution. If NULL
(the default),
the lower bound will be estimated along with the other parameters.
Logical: whether to print a message when not all parameters of the distribution can be computed.
J. R. M. Hosking jrmhosking@gmail.com
Numerical methods and accuracy are as described in
Hosking (1996, pp. 10--11).
Exception:
if pelwak
is unable to fit a Wakeby distribution using all 5 \(L\)-moments,
it instead fits a generalized Pareto distribution to the first 3 \(L\)-moments.
(The corresponding routine in the LMOMENTS Fortran package
would attempt to fit a Wakeby distribution with lower bound zero.)
The kappa and Wakeby distributions have 4 and 5 parameters respectively
but cannot attain all possible values of the first 4 or 5 \(L\)-moments.
Function pelkap
can fit only kappa distributions with
\(\tau_4 \le (1 + 5 \tau_3^2) / 6\)
(the limit is the \((\tau_3, \tau_4)\) relation satisfied by the generalized logistic distribution),
and will give an error if lmom
does not satisfy this constraint.
Function pelwak
can fit a Wakeby distribution only if
the \((\tau_3,\tau_4)\) values, when plotted on an \(L\)-moment ratio diagram,
lie above a line plotted by lmrd(distributions="WAK.LB")
,
and if \(\tau_5\) satisfies additional constraints;
in other cases pelwak
will fit a generalized Pareto distribution
(a special case of the Wakeby distribution) to the first three \(L\)-moments.
Hosking, J. R. M. (1996). Fortran routines for use with the method of \(L\)-moments, Version 3. Research Report RC20525, IBM Research Division, Yorktown Heights, N.Y.
pelp
for parameter estimation of a general distribution
specified by its cumulative distribution function or quantile function.
lmrexp
, etc., to compute the \(L\)-moments
of a distribution given its parameters.
For individual distributions, see their cumulative distribution functions:
cdfexp | exponential | |
cdfgam | gamma | |
cdfgev | generalized extreme-value | |
cdfglo | generalized logistic | |
cdfgpa | generalized Pareto | |
cdfgno | generalized normal | |
cdfgum | Gumbel (extreme-value type I) | |
cdfkap | kappa | |
cdfln3 | three-parameter lognormal | |
cdfnor | normal | |
cdfpe3 | Pearson type III | |
cdfwak | Wakeby | |
cdfwei | Weibull |
# Sample L-moments of Ozone from the airquality data
data(airquality)
lmom <- samlmu(airquality$Ozone)
# Fit a GEV distribution
pelgev(lmom)
Run the code above in your browser using DataLab